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Abstract In this book article, at first we survey some recent advances in variational
integrators focusing on the class of them known as exponential variational integra-
tors, applicable in finite dimensional mechanical systems. Since these integrators
are based on the space and time discretization, we start with a brief summary of
the general development of the discrete mechanics and its application in describing
mechanical systems with space-time integration algorithms. We, then, make an
attempt to treat briefly in depth only the particular topic of adaptive time step
exponential variational integrators. To this aim, the action integral along any curve
segment is defined using a discrete Lagrangian that depends on the endpoints of the
segment and on a number of intermediate points of interpolation. This Lagrangian
is then, at any time interval, written as a weighted sum of the Lagrangians
corresponding to a set of the chosen intermediate points to obtain high order
integrators. The positions and velocities are interpolated here using special expo-
nential functions. Finally, we derive exponential higher order variational integration
methods for the numerical integration of systems with oscillatory solutions. The
obtained exponential variational integrators using constant or adaptive time step are
tested for the numerical solution of several problems showing their good behavior to
track oscillatory solutions. Furthermore, we use the space-time geodesic approach
of classical mechanics to explore whether the new methodology may be effective in
adaptive time schemes.
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1 Introduction

During the last decades, there have been developed several numerical integration
methods for Lagrangian systems, where the integrator is derived by discretizing
the Hamilton’s principle. This class of integration methods is known as discrete
variational integrators and have specific advantages that make them attractive for
many applications in mechanical systems. They are appropriate for both conserva-
tive and nearly dissipative (forced) systems. The conservative nature of variational
integrators can allow substantially more accurate simulations at lower cost [1].

By understanding the geometry of space one may choose better discretizations
while by understanding the geometric viewpoint one may recover the symmetries
and invariants of the physical system (conservation of energy, conservation of linear
and angular momentum, variational principles, etc.) [2–4].

In numerical solution of ordinary differential equations, one of the most difficult
problems is related to the development of integrators for highly oscillatory systems
[1]. As is well known, standard numerical schemes may require a huge number
of time steps to track the oscillations. But, even with small size steps they may
alter the dynamics, unless the chosen method has specific advantages. A useful
category of them is that of geometric integrators, numerical schemes that preserve
some geometric features of the dynamical system. These integrators provide to
simulations longer time running without spurious effects (like bad energy behavior
of conservative systems) than the traditional ones [5–7].

These methods are automatically symplectic thanks to the resulting good energy
behavior. Also the symmetries of the discrete Lagrangian lead to conservation of
orbital and angular momenta by the integrator.

In the class of asynchronous variational integrators (AVI) a refinement was
developed that uses different time steps at different points in space and particularly
in regions where the specific problem requires more (or less) accuracy (see [8]).
The AVI are based on space-time discretizations which allow different time steps
for different elements in a finite element mesh.

So far, in order to improve the numerical integration of highly oscillatory
problems, e.g. [1], and derive methods as well as error bounds for families
of quadrature methods that use for the required derivatives the finite difference
approximations, special techniques have been developed. Alternatively, the use of
the phase-lag property of [9], trigonometric fitting, and phase-fitting techniques
lead to methods based on variable coefficients that depend on the characteristic
frequency of the problem [10]. The latter, is known as exponential (or trigonometric)
fitting and has been formulated long ago [9, 11, 12]. Exponentially fitting algorithms
are considered as natural extensions of the classical polynomial fitting due to their
characteristic property to approach the classical ones because the involved dominant
frequencies tend to zero. The important problem of convergence of exponentially
fitted methods, especially of the known as multi-step ones, has been investigated
within Lyche’s theory [12] (for a comprehensive discussion the reader is referred to
[9]).
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The main benefits of the variational integrators and phase fitting are exploited
in previous works [13–15] for Lagrangian problems similar to that employed
for testing ordinary differential equations (the harmonic oscillator with a given
frequency ω). Furthermore, the exponential variational integrators, which solve
exactly the test system, have been applied to general Lagrangian problem of single
particle motion (the planar two-body problems) by determining the frequency ω at
every step of the integration.

In recent years, a great number of phenomena are investigated with remarkably
complex computer models and codes. Computational experiments, i.e., runs of these
codes with various input data covering a wide range, lead to predictions (through
the provided output) of several physical observables and parameters. In most of the
cases the runs are computationally expensive and often our objective is the required
computer experiments to be less time-consuming predictors of the output for the
given data.

In solving special problems based on ordinary differential equations (ODEs)
using numerical integration schemes, computational cost may be appreciably
reduced by time adaptivity or using time adaptive steps [16, 17]. Admittedly,
this tool possesses significant advantages with respect to the efficiency, the com-
putational accuracy, and the ease in the implementation. The use, however, of
symplectic integrators performs remarkably well in problems involving Hamiltonian
integrations [7, 18, 19].

Many authors have, so far, addressed various derivations and have adopted
symplectic integrators with variable time steps, despite the fact that the early results
were not really promising [20–22]. Essentially, two main types of time variation
steps have been utilized. In the first, the time step was explicitly varied in the
flow of the time, a mostly problematic choice, while in the second, the time step
was adopted while using the dynamical variables of the system (particle positions
q, corresponding momenta p, etc.). For the case of the variable time, the derived
equations are no longer in canonical Hamiltonian form leading to rather unreliable
results.

Adaptive time step integrators may reduce some of the aforementioned shortcom-
ings with high order non-symplectic schemes. Those are recently adopted [17, 23].

In improving the Galerkin type high order integrators [13–15], in such a way
that adaptive time stepping to be used, the combination of space-time [16, 18]
and geodesic view point of [24, 25] approaches are considered. These provide the
possibility to overcome various problems that appear when symplectic integrators
with variable time steps are employed. One can derive an optimal time step
adaptation method computationally cheaper as much as possible.

Towards this end, a general formulation to derive high order variational integra-
tors is presented (Section 2). They are tested on the numerical solution of some
examples of the general N -body problem. In connection to those integrators we
formulate the combined space-time and geodesic ideas of adaptive time stepping
(Section 4) which we use to derive the proposed schemes (Section 5) and test
(Section 6) in a couple of numerical applications. Finally, the advantages of the
derived method are summarized in Section 7.
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2 The Advantages of Variational Integrators

High order variational integrators that are applicable to physical systems where the
Lagrangian is of separable form, are derived by following similar steps to those
followed in the discrete variational calculus, see e.g. [4]. Thus, for a smooth and
finite dimensional configuration manifold Q, one defines the discrete Lagrangian
Ld through the mapping

Ld : Q×Q → R. (1)

This Lagrangian may be considered as an approximation of a continuous action
obtained as

Ld(qk, qk+1, hk) ≈
∫ tk+1

tk

L(q, q̇)dt. (2)

Then, one defines also the action sum Sd as

Sd : QN+1 → R, (3)

(N ∈ N), that corresponds to the above Lagrangian as

Sd(γd) =
N−1∑

k=0

hkLd(qk, qk+1, hk), (4)

where γd = (q0, . . . , qN) denotes the discrete trajectory of the studied system.
Following the procedure of the continuous Mechanics we can further compute the
derivative of Ld as

dLd(q0, q1) = D1Ld(q0, q1)+D2Ld(q0, q1), (5)

interpretingDiLd as the derivative with respect to the i-argument of Ld . According
to the discrete variational principle, the solutions of the discrete system are
determined from the Ld . Thus, in order to obtain the equation describing the motion
of the system, we extremize the action sum Sd , over all the intermediate points of
the trajectory γd by keeping the endpoints q0 and qN fixed. The resulting system of
difference equations are

hk−1D2Ld(qk−1, qk, hk−1)+ hkD1Ld(qk, qk+1, hk) = 0, (6)

where k = 1, . . . , N − 1. These equations are known as discrete Euler–Lagrange
equations [4, 13].

To derive high order methods addressed in this work, we approximate the action
integral along the curve segment with endpoints qk and qk+1 (see Figure 1), we use
a discrete Lagrangian that depends only on the chosen endpoints, see Equation (2).
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Fig. 1 Intermediate time nodes t jk ∈ [tk, tk+1] and corresponding configurations qk and qk+1

This way, we obtain expressions for the configurations qjk and velocities q̇jk at time
t
j
k ∈ [tk, tk+1] where j = 0, . . . , S − 1, S ∈ N. Then, by expressing the tjk as

t
j
k = tk + C

j
k hk for C

j
k ∈ [0, 1] (7)

such that

C0
k = 0, CS−1

k = 1, (8)

where hk ∈ R denotes the time step, we write [13]

q
j
k = g1(t

j
k )qk + g2(t

j
k )qk+1,

q̇
j
k = ġ1(t

j
k )qk + ġ2(t

j
k )qk+1. (9)

Next, for the representation of the oscillatory behavior of the solution [26–29], we
choose functions of the form

g1(t
j
k ) = sin

(

u− t
j
k − tk

hk
u

)

(sinu)−1,

g2(t
j
k ) = sin

(
t
j
k − tk

hk
u

)

(sinu)−1. (10)

For the sake of continuity, the conditions

g1(tk+1) = g2(tk) = 0 (11)

g1(tk) = g2(tk+1) = 1 (12)

must be fulfilled.
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It should be mentioned that, for any different choice of interpolation, we define
the discrete Lagrangian Ld by a weighted sum of the form [13]

Ld(qk, qk+1, hk) =
S−1∑

j=0

hkw
jL(q(t

j
k ), q̇(t

j
k )), (13)

where, as can be readily proved, it holds [13, 26]

S−1∑

j=0

wj(C
j
k )

m = 1
m+ 1

, (14)

with m = 0, 1, . . . , S − 1 and k = 0, 1, . . . , N − 1.
From the above equations it becomes clear that, if the time step, hk , is equal to

hk = h at every time interval, the resulting integrator is of constant time step.
By applying the above interpolation technique in combination with the trigono-

metric expressions of (10) and following the phase-lag analysis of [13, 26], the
parameter u entering equations (10) must be determined as u = ωh. For problems
involving a definite frequency ω (such as the harmonic oscillator), the parameter u
can be easily computed. However, for the solution of periodic orbit problems (orbital
problems) of the generalN -body problem, where no unique frequency of the motion
can, in general, be determined, a new parameter u must be computed by estimating
the frequency of the motion for any individual moving mass of the system [14, 15].

3 Exponential Integrators

When trying to solve numerically Hamiltonian systems of the form

q̈ +Ωq = g(q), g(q) = −∇U(q), (15)

whereΩ is a diagonal matrix (it may contain diagonal entries ω with large modulus)
and U(q) is a smooth potential function, we mostly are interested in the long time
behavior of the numerical solutions. In such cases, application of the above methods
imposesωh to be rather large. Then, because an exact discretization of Equation (15)
satisfies the equation qn+1 − 2 cos(hω)qn + qn−1 = 0, we may write

qn+1 − 2 cos(hω)qn + qn−1 = h2ψ(ωh)g(φ(ωh)qn), (16)

where the functions ψ(ωh) and φ(ωh) are even, real-valued functions satisfying
the conditions ψ(0) = φ(0) = 1 [5]. The latter equations represent exponential
integrators (see Appendix for some typical examples).
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3.1 High Order Exponential Variational Integrators

If we apply the steps of deriving high order variational integrators (see Section 2) to
the Hamiltonian system (15), the discrete Euler–Lagrange equations (6) lead to the
expressions

qn+1 +Λ(u,ω, h, S)qn + qn−1 = h2Ψ (ωh)g(Φ(ωh)qn), (17)

where

Λ(u,ω, h, S) =

S−1∑

j=0

wj

[
ġ1(t

j
k )

2 + ġ2(t
j
k )

2 − ω2(g1(tjk )
2 + g2(t

j
k )

2)
]

S−1∑

j=0

wj

[
ġ1(t

j
k )ġ2(t

j
k )− ω2g1(t

j
k )g2(t

j
k )

] . (18)

Based on the latter two expressions, we derive exponential variational integrators
that use the configurations qjk and velocities q̇jk of (9). We then get

Λ(u,ω, h, S) = −2 cos(ωh). (19)

Whenever the latter equation holds, exponentially fitted methods relying on phase
fitted variational integrators can be derived [13] which means that high order vari-
ational integrators can be considered as exponential integrators. Several numerical
applications of this type have been carried out [13–15] and, due to their importance,
in Section 3.3 we examine them in more detail through some representative
examples.

3.2 Estimation of Frequency in Three Dimensional Particle
Motions

Recently, exponential variational integrator techniques have been used [13] by
estimating the required frequency on the basis of the frequency ω of a harmonic
oscillator. In solving the orbital N -body problem by using a constant time step, a
new way of frequency estimation is necessary to find it for each body (1) at the
initial time t0 and (2) at a time tk , k = 1, . . . , N − 1.

Obviously, by applying the trigonometric interpolation (10), the parameter u can
be chosen as u = ωh, but for problems where the domain frequency ω is fixed and
known (such as the harmonic oscillator) the parameter u can be easily computed.
For the orbital N -body problem, where no global frequency is determined, u must
be found by estimating the individual frequency of the motion of each moving point
particle.
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In the case of the 3-dimensional particle motion where N masses are moving
in three dimensions, assuming that qi(t), i = 1, . . . , N , denotes the trajectory and
q̇i (t) the velocity (with magnitude |q̇i (t)|) of the i-th particle, the corresponding
curvatures can be computed from the known expressions

ki(t) =
|q̇i (t)× q̈i (t)|

|q̇i (t)|3
. (20)

After a short time h, the angular displacement of the i-th mass is

h|q̇i (t)× q̈i (t)|
|q̇i (t)|2

, (21)

which for the actual frequency gives

ωi (t) =
|q̇i (t)× q̈i (t)|

|q̇i (t)|2
. (22)

From (20) and (22) the well-known relation

ωi (t) = ki(t)|q̇i (t)| (23)

is satisfied (see also [13]).
Focusing on the many-body physical problem described via the Lagrangian

L(q, q̇) = 1
2
q̇T M(q)q̇ − V (q), (24)

(M(q) represents a symmetric positive definite mass matrix and V is the potential
function), we write the continuous Euler–Lagrange equations as

M(q)q̈ = −∇V (q). (25)

In this system, the frequency ωi (tk) for the i-th body at time tk , k = 1, . . . , N − 1
given by Equation (22), takes the form

ωi (tk) = h−1

∣∣M−1(qk)pk ×
(
M−1(qk)pk −M−1(qk−1)pk−1

)∣∣
∣∣M−1(qk)pk

∣∣2
. (26)

The quantities on the right-hand side in the latter equation are the mass matrix, the
configuration, and the momentum of the i-th body. The frequency ωi (tk), at an initial
time instant t0 (at which the initial positions are q̄0 and initial momenta are p̄0), is

ωi (t0) =
∣∣M−1(q̄0)p̄0 ×

(
−M−1(q̄0)∇V (q̄0)

)∣∣
∣∣M−1(q̄0)p̄0

∣∣2
. (27)
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Equations (26) and (27) provide an “estimated frequency” for each mass in
the general periodic motion of the N -body problem and allow the derivation of
high order variational integrators based on trigonometric interpolation in which the
frequency is estimated at every time step of the integration procedure. Compared to
methods which employ constant frequency, the latter integrators show better energy
behavior, i.e., smaller oscillation amplitude of the total energy is obtained [13, 14].
Before closing this section, it should be mentioned that, the linear stability of the
above method is comprehensively analyzed in previous works [13, 14, 30].

3.3 Examples of Constant Time Step Exponential Integrators

Focusing on the numerical solution of the orbital problem of N -bodies moving in
the gravitational field, we write the Lagrangian function as [5, 6]

L(q, q̇) = 1
2

N∑

i=1

miq̇
2
i +

N∑

i=1,j=1,i ̸=j

G
mimj

||qi − qj ||
t (28)

(G denotes the gravitational constant). In this section we study the motion of (1) the
planar two-body problem and (2) that of the multi-body solar system and test the
performance of the above mentioned novelties on these two systems.

3.3.1 Planar Two-Body Problem

As a first test of the above technique, we study the motion of the simple system
of two objects that interact with each other through a central potential. The most
famous example of this system is the planar Kepler’s problem in which two masses
attract each other with the gravitational force. In the solar system, such an interaction
leads to elliptic orbits for the Sun–planet system and hyperbolic orbits for the Sun–
comet system.

By choosing the heavier body as the center of the coordinate system, the motion
remains planar. Denoting the position of the second body by q = (q1, q2) ∈ R2, the
system’s Lagrangian (28) takes the simple form

L(q, q̇) = 1
2
q̇2 + 1

|q| . (29)

(for simplicity, the masses of the bodies and the gravitational constant are considered
equal to 1). Also, as initial conditions we assume

q = (1− ϵ, 0) and q̇ =
(

0,

√
1+ ϵ

1− ϵ

)

, (30)

where ϵ ∈ R is the eccentricity of the orbit [5].
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Fig. 2 Planar two-body problem with eccentricity ϵ = 0.8, time step h = 0.01, and order of
the method S = 5 for 104 steps. (a) Energy evolution using trigonometric interpolation. (b) The
estimated frequency for the moving mass using the expression (22)

In trying to solve numerically the above problem, a difficulty arises when the
eccentricity of the elliptical orbit is high. For example, some periodic comets have
eccentricities between 0.7≤ ϵ ≤ just below 1 (e.g., for Neptune’s third largest moon
Nereid ϵ = 0.750, Halley’s comet has ϵ = 0.967, etc.). For this reason, we have
chosen to test the above methods in the description of elliptical orbital problems
with very high eccentricities for the two cases described below.

(i) In the first computational experiment, we consider the eccentricity ϵ = 0.8
and we choose time step h = 0.01. We use trigonometric interpolation with
u = ωh and S = 5. The good energy behavior of the method, obtained for a
simulation of 104 steps, is illustrated in Figure 2a. The frequency is estimated at
every integration step through the application of (22)–(26). The time variation
is shown in Figure 2b where the peaks represent the estimated frequency at
points close to the perihelion (the point where the moving mass is nearest to
the central body). A comparison of the total energy evolution using constant
(dashed line) and estimated (solid line) frequency is shown in Figure 3. As can
be seen, even for small eccentricities (ϵ = 0.2) the amplitude of the energy
oscillation is smaller when the frequency is estimated at every time step of the
integration process. Similar results are obtained for higher eccentricities.

(ii) In the next simulation experiment, we integrate the two-body problem in the
cases of elongated orbits with the high eccentricities: ϵ = 0.6, ϵ = 0.7, and
ϵ = 0.8 and 103 time steps in order to explore the need of using high order
variational schemes. For this reason, we test the long term behavior of two
methods, the trigonometric and the Störmer–Verlet method [5], which is also
variational, but of second order accuracy. For both methods, the results for the
configuration qk of the body’s orbit are illustrated in Figure 4. These results
demonstrate the excellent behavior of the higher accuracy method, even for
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Fig. 3 Planar two-body problem with ϵ = 0.2 using trigonometric interpolation for S = 5, h =
0.01. Evolution of the total energy for constant and estimated frequency using (22)

−1.5−1−0.5 0 0.5

−0.5

0

0.5

1

q1

q 2

(a)

−1.5−1−0.5 0

−0.5

0

0.5

1

q1

q 2

(b)

−1 0

−0.5

0

0.5

1

q1

q 2

(c)

Fig. 4 Planar two-body problem for h = 0.01 for 103 steps for eccentricities (a) ϵ = 0.6, (b)
ϵ = 0.7 and (c) ϵ = 0.8. Long term behavior of the Störmer–Verlet method of [5] and the one that
uses trigonometric interpolation with S = 5

orbits with extremely high eccentricity and large number of periods. On the
other hand, the Störmer–Verlet method gives perturbed orbits even for small
eccentricities, showing the necessity of employing higher order schemes.

3.3.2 The Modified Solar System

For multi-body systems, the advantages of choosing the parameter u via the
frequency estimation of Equation (22) are illustrated by adopting the modified solar
system with two planets [5]. For this system, which is described by the Lagrangian
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Fig. 5 Modified solar system with h = 0.01 and S = 3. (a) Total energy evolution using
trigonometric interpolation for constant ωi (blue line) and estimated ωi at every time step
(black line). (b) Estimated frequency for the three bodies of the modified solar system using the
expression (22)

function (28) with N = 3, we choose m1 = 1, m2 = m3 = 10−2 and assume initial
configurations and velocities given by

q1 = (0, 0), q2 = (1, 0), q3 = (4, 0) (31)

q̇1 = (0, 0), q̇2 = (0, 1), q̇3 = (0, 0.5). (32)

The resulted motion of the two planets is nearly circular with periods equal to T1 ≈
2π and T2 ≈14π , respectively [5].

At first, we compare the results of (i) a variational integrator using trigonometric
interpolation with constant frequencies, ωi , i = 1, 2, 3, during the integration
procedure, with those of (ii) a variational integrator derived by estimating the
parameter u at every time step using Equation (22). In Figure 5a, we plot the total
energy resulting from these two methods. The advantage of the second method at
every step is obvious. In Figure 5b the evolution of the estimated angular velocities
for each body (ω1,ω2, and ω3, respectively) is shown.

For both numerical tests, the number of intermediate points is S = 3 while the
time step is h = T1/365 = 2π , i.e., equal to the period of the first planet.

4 Derivation of Time Adaptive Integrators Through the
Geodesic Approach

When one studies the discrete Euler–Lagrange equation and geodesics, the main
concern is how to find the equations of motion of a particle restricted to a particular
curved surface (a sphere, a torus, etc.). As is well known, if a particle is constrained
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to move on a particular surface, it would follow the path of a geodesic on that
surface. For example, on a sphere, it would follow a great circle in its motion. The
more general problem related to this issue is how to model the trajectory of a particle
constrained to move on a manifold M (or simply surface) in the discrete mechanics
on the basis of geodesic approach. In general, to illustrate the algorithm performance
on manifolds one, for example, may compute minimal geodesics, shortest paths on
a sphere, a torus, etc. and also test the computation of equidistance curves, as well
as shortest paths and geodesic distances on synthetic (complicated) objects.

In many physical applications, for the numerical solutions of the governing
ordinary differential equations, the class of integration schemes based on adaptive
time integrators perform remarkably well. The derivation of time adaptive integra-
tors starts from the continuous Lagrangian formulation. Here, as an example, we
consider physical problems described through the simple Lagrangian

L(x, ẋ) = 1
2
ẋ2 − V (x), x ∈ R (33)

and the corresponding second order Euler–Lagrange differential equation

ẍ = −∂V
∂x

. (34)

By choosing the initial conditions as x0 = x(0) and ẋ0 = ẋ(0), an expression of
x(t) can be determined and adopted for some time interval t ∈ [0, T ], as a solution
of (34).

We then write down the generalized Lagrangian

L̃ = 1
2
x′2 + 1

2V
t ′2, (35)

where, in order to disentangle from dots representing time derivatives, the primes
denote differentiation with respect to some parameter λ [25] assuming that t = t (λ)

and, thus, x = [t (λ)]. For the latter Lagrangian the corresponding Euler–Lagrange
equations and the relevant initial conditions take the form

x′′ = − 1
2V 2

∂V

∂x
t ′2, x0 = x(0), x′

0 = ẋ0t
′
0 (36a)

t ′′ = 1
V

∂V

∂x
t ′x′, t0 = 0, t ′(0) = αV (x0). (36b)

It is worth mentioning that, even though L̃ depends upon V and couples the space
and time variables in a non-trivial manner, the evolution equations for x depend
only on ∂V/∂x. Furthermore, we note that one could add on V any constant without
changing the x-dynamics [24, 25].
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We now consider two functions of the parameter λ, namely x̃(λ) and t (λ), that are
further assumed to be solutions of equations (36) for some time interval λ ∈ [0, T̃ ].
For these solutions we can write x̃(λ) = x(2t/

√
α) as long as both sides of (36)

are explicitly defined, that is, as long as the solutions for x and x̃ differ only by
an arbitrary constant. This constant, in essence, operates just as a time rescaling
[24, 25].

In exploring for appropriate expressions for x̃(λ) and t (λ), we adopt the two
Lagrangians

L1 =
√
x́2 + f (x)t́2, L2 =

1
2

(
x́2 + f (x)t́2

)
. (37)

The action corresponding to L1 is invariant under arbitrary reparametrization of
λ, whereas the L2 action is only affine reparametrization invariant. This leads
to Euler–Lagrange equations corresponding to L2 and hence they are affine time
reparametrization invariants.

The Euler–Lagrange equations that come out of L1 are

d

dλ

(
x́

√
x́2 + f (x)t́2

)

= t́2

2
√
x́2 + f (x)t́2

∂f

∂x
(38a)

d

dλ

(
f (x)x́

√
x́2 + f (x)t́2

)

= 0. (38b)

The later equations are also reparametrization invariants with respect to λ, i.e., they
are invariant under the replacements λ = λ(µ) and dλ/dµ ̸= 0. This means that, a
solution of (38) defines a curve in the space (x, t). Furthermore, this solution gives
us information on which curve does it belong, but it does not show us the exact point
at that curve. The curve in question acts as a geodesic information for the system of
equations as well as for its solution. The later equations are then considered to be
evolution equations, which provide us with, not only the shape of the curve, but also
with its parametrization [25].

5 Time Adaptive Exponential Variational Integrators

In this section we apply the steps followed in Section 2, in the Lagrangians L1
and L2 of equations (37). Using (13), for the length action given by L1, the
corresponding discrete Lagrangian reads [24, 29]

L1d(qk, qk+1, hk) =
S−1∑

j=0

hkw
j

√(
x́
j
k

)2
+ f

(
x
j
k

) (
t́
j
k

)2
, (39)
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where the xjk are defined using (9) and x́
j
k , t́

j
k using the expression [29]

q́
j
k = ∂q

j
k

∂λ
= ∂t

∂λ

(
ġ1(t

j
k )qk + ġ2(t

j
k )qk+1

)
= ġ1(t

j
k )qk + ġ2(t

j
k )qk+1. (40)

For the Lagrangian (39), the discrete Euler–Lagrange equations (6) give the discrete
analogues of (38a) as

S−1∑

j=0

wj hk

2dk,k−1

[
2ġ2(t

j
k )
(
ġ1(t

j
k )xk−1 + ġ2(t

j
k )xk

)

+ ∂

∂xk
f
(
g1(t

j
k )xk−1 + g2(t

j
k )xk

) (
ġ1(t

j
k )tk−1 + ġ2(t

j
k )tk

)2]

+
S−1∑

j=0

wj hk+1

2dk+1,k

[
2ġ1(t

j
k )
(
ġ1(t

j
k )xk + ġ2(t

j
k )xk+1

)

+ ∂

∂xk
f
(
g1(t

j
k )xk + g2(t

j
k )xk+1

) (
ġ1(t

j
k )tk + ġ2(t

j
k )tk+1

)2]
= 0, (41)

and of (38b) as

S−1∑

j=0

wj hkġ2(t
j
k )

dk,k−1

[
f
(
g1(t

j
k )xk−1 + g2(t

j
k )xk

) (
ġ1(t

j
k )tk−1 + ġ2(t

j
k )tk

)2]

+
S−1∑

j=0

wj hk+1ġ1(t
j
k )

dk+1,k

[
f
(
g1(t

j
k )xk+g2(t

j
k )xk+1

) (
ġ1(t

j
k )tk+ġ2(t

j
k )tk+1

)2]
= 0.

(42)

In the latter equation dk+1,k is given by [29]

dk+1,k =
{[

ġ1(t
j
k )xk + ġ2(t

j
k )xk+1

]2

+f
(
g1(t

j
k )xk−1 + g2(t

j
k )xk

) [
ġ1(t

j
k )tk−1 + ġ2(t

j
k )tk

]2} 1
2

(43)

and dk,k−1 by

dk,k−1 =
{[

ġ1(t
j
k1
)xk−1 + ġ2(t

j
k−1)xk

]2
+

f
(
g1(t

j
k−1)xk−2 + g2(t

j
k−1)xk−1

) [
ġ1(t

j
k−1)tk−2 + ġ2(t

j
k−1)tk−1

]2} 1
2

. (44)
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In accordance with the continuous formulation, Equations (41) and (42) are not
independent. To solve the above system, we can choose arbitrary step sizes in either
time t or space x direction and solve these equations for the x or t , respectively.

Once the discrete Euler–Lagrange equations (41) and (42) are solved, we get a
sequence of points (x0, t0), . . . , (xN , tN ), where t0, . . . , tN does not necessarily rep-
resent the physical time. Using this sequence of points, for the discrete Hamiltonian
we may write [24, 25]

Hd(x0, x1, h0) = −h0D3Ld(x0, x1, h0)− Ld(q0, q1, h0) . (45)

Recalling that the energy of the system, expressed by its Hamiltonian, is the
conjugate variable of the physical time, i.e.,

Hd(x0, x1, h0) = Hd(x1, x2, h1), (46)

we can restore the physical time.

6 Numerical Results

In this section, we apply the above time adaptive exponential variational integrators
in the following systems: (1) the simple pendulum and (2) the orbital two-body
problems with extremely high eccentricities of their periodic orbits.

6.1 Harmonic Oscillator

The numerical scheme derived in Section 5 is tested below in the case of a simple
pendulum described through the (approximate) Lagrangian

L(q, q̇) = 1
2
q̇2 − 1

2
ω2q2, (47)

leading to the equation of motion

q̈ = −ω2q. (48)

Using the interpolation of (9), the discrete Lagrangian that provides the system’s
equations of motion takes the form
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Ld(qk, qk+1) =
h

2

⎡

⎣
S−1∑

j=0

wj
(
ġ1(t

j
k )qk + ġ2(t

j
k )qk+1

)2

−ω2
S−1∑

j=0

wj
(
g1(t

j
k )qk + g2(t

j
k )qk+1

)2
⎤

⎦ .

(49)

For the latter Lagrangian, following Section 5, the discrete Euler–Lagrange equa-
tions provide the two-step variational integrator [15, 28]

qk+1 +

S−1∑

j=0

wj

[
ġ1(t

j
k )

2 + ġ2(t
j
k )

2 − ω2(g1(tjk )
2 + g2(t

j
k )

2)
]

S−1∑

j=0

wj

[
ġ1(t

j
k )ġ2(t

j
k )− ω2g1(t

j
k )g2(t

j
k )

] qk + qk−1 = 0.

(50)
In order to demonstrate the benefits of the latter integrator on the numerical

accuracy of the obtained methods, we compare its performance in the following
two cases: (1) in the methods adopting constant time step (see Section 2) and (2)
in the methods proposed in Section 5 (adaptive time step methods). We check the
energy error at a specific integration time t = 3 (arbitrary taken) for five different
frequencies ω ∈ {1, 5, 10, 15, 20} and initial conditions (q0, p0) = (2, 1), see
Figure 6. As can be seen both methods increase the energy error as the frequency of
the problem increases. Secondly, even though for relatively small values of ω < 5
both methods lead to energy error smaller than about 10−11, for high frequency
values, constant time step schemes lead to clearly larger energy error.
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Fig. 6 Energy error for the harmonic oscillator using trigonometric interpolation (Section 2)
versus the time adaptive one (Section 5) for the frequencies ω = 1, ω = 5, ω = 10, ω = 15,
and ω = 20
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In computing the above results, both methods were considered to be third order
methods, i.e., S = 4, while similar results have been obtained for other choices of
S. We should also note that, we have chosen the same initial time step h = 0.05 for
all results of Figure 6.

In order to illustrate how the specific choice of the time step affects significantly
the computational cost, a prominent concept for our present work, we consider
below some more complicated examples.

6.2 Orbits of the Two-Body Problem with Extremely High
Eccentricities

To check the efficiency of the proposed technique, we consider again the Kepler’s
two-body problem discussed in Section 3.3.1 but now in the case of periodic orbits
with remarkably high eccentricities (just below unity, ϵ = 0.99). We compare the
performance for long term integrations (106 periods) of the methods of Section 2
with that of the methods of Section 5. Figure 7 shows the exact orbit obtained with
the method of Section 2 (solid line), the calculated points for the first period (points
labeled with ◦) and the calculated points for the last period (points labeled with !).
While most of the standard symplectic schemes (among them the one discussed in
Section 2) fail to track the periodic orbit for such a high eccentricity, see [17], when
adaptive time step is utilized, the obtained integrator is extremely stable, keeping
the orbit close to the exact one. For this numerical experiment the observed energy
error is oscillating around much smaller amplitude values (around 10−7).

−2 −1.5 −1 −0.5 0
−0.2

−0.1

0

0.1

0.2

q1

q 2

Fig. 7 Periodic orbits of the 2-body problem with eccentricity 0.99 for 106 periods. (1) Exact
solution (solid line) and (2) calculated points for the first (open circle) and last period (open square)
using the exponential variational integrators of Section 5
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Fig. 8 Position error versus CPU time, for a 2-body problem moving in periodic orbit with
eccentricity ϵ = 0.99, taken at an arbitrary time t = 3 through numerical integration with an
exponential variational integrator that uses constant time step (red line) compared to the one that
uses adaptive time step (blue line)

As a final benefit of the proposed method, we explore the numerical convergence.
To this aim, we choose as initial conditions the (q0, p0) = (2, 2) and the
time interval [0, 3]. We first calculate the global errors for the position q(t)

at t = 3 (arbitrary taken, but following [15, 31]) while using constant time
steps h ∈ {0.01, 0.05, 0.1, 0.5, 1}. Figure 8 shows the resulting errors versus the
computational time needed to obtain them (red line). It is obvious that smaller
position errors are obtained for short time steps, which leads to longer computational
time. When the adaptive time step exponential integrator of Section 5 is applied
(blue line), the position error obtained is remarkably smaller. It should be mentioned
that, in obtaining these results, we forced the proposed schemes to take the same
computational time with that taken when constant time step is applied.

7 Conclusions

In this article, at first we reviewed briefly the concepts and relevant literature in dis-
crete Lagrangian Mechanics and specifically in the discrete variational integrators
developed the last decades for solving numerically the discrete Euler–Lagrangian
equations. A great number of books and research articles published in this field is
incorporated in the reference list below. These works have appreciably contributed
in the development, enhancement, and enrichment of the topic of discrete variational
integrators.
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We have also presented a brief review on the extensions and refinements of the
class of discrete exponential variational integrators with a particular regard to time
adaptive exponential integrators. Focusing on systems of which the Lagrangian is
of separable form, a methodology for deriving high order exponential variational
integrators with adaptive time step has been developed. After the above, the
following concluded remarks are extracted.

1. The procedure and methodology developed unfold the standard Euler–Lagrange
character to its space-time manifold and translate it through the geodesic (shortest
route) connecting two points on a curved surface.

2. In contrast to all the previous extensions, from the adaptive time step methods,
rather than optimizing the choice of step sizing, we introduced an artificial time
step parameter, and used the energy behavior in order to calculate the actual one.

3. Specifically, the proposed methods do not need to optimize the step size and,
instead, one can employ the space-time geodesic formulation to generate an
adaptive scheme that still preserves general underlying geometric structure
properties of the system.

Finally, it is noteworthy to mention that, simulation tests showed that, this
technique integrates efficiently stiff systems (like the two-body problem with very
high eccentricity up to ϵ = 0.99) while conserving at the same time all the benefits
of the classical variational integrators.

Acknowledgement Dr. Odysseas Kosmas wishes to acknowledge the support of EPSRC via grant
EP/N026136/1 “Geometric Mechanics of Solids.”

Appendix

By denoting sinc(ξ) = sin(ξ)/ξ , special cases of the exponential integrators
described using (16) can be obtained, i.e.,

• Gautschi type exponential integrators [11] for

ψ(Ωh) = sinc2
(
Ωh

2

)
, φ(Ωh) = 1

• Deuflhard type exponential integrators [32] for

ψ(Ωh) = sinc(Ωh), φ(Ωh) = 1

• García-Archilla et al. type exponential integrators [33] for

ψ(Ωh) = sinc2(Ωh), φ(Ωh) = sinc(Ωh)
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Finally, in [5] a way to write the Störmer–Verlet algorithm as an exponential
integrators is presenting.
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