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Abstract 

The implementation of a fuzzy neural network with an array of tin oxide based gas sensors for both quantitative and qualitative gas 
sensing is demonstrated. The architecture of the system is presented with some references to the general theory of fuzzy sets and fuzzy 
calculus. Experimental results are presented in the case of gas identification between CO, ethanol and methane and in the case of CO 
detection in different levels of relative humidity. Finally the effect of network parameters to the functionality of the system is discussed, 
especially in the case of functions evaluating the fuzzy AND and OR operations. 
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1. Introduction 

Pattern recognition techniques are widely used in gas 
sensing to extract information when multi component 
analysis is performed. Generally, the performance of such 
techniques is affected by four major problems, namely: 
feature extraction, classification, sensor stability and gas 
mixture affirmation. Feature extraction is the procedure 
that transforms the sensor output to qualitative informa- 
tion. Since this transformation is not a linear one on sen- 
sor output, suitable numerical tricks must be engaged. 
Classification, when considered, is the recognition and 
identification of patterns produced by feature extraction. 
This procedure can be an easy one when in the represen- 
tation space, the subspaces referred to the classes pro- 
duced by the feature extraction are connected. Then, Bay- 
esian surfaces can be used to separate the classes. But 
normally this is not the situation in gas sensing applica- 
tiot, s. Sensor stability may dramatically decrease the life- 
time of a pattern recognition system. This is caused from 
the fact that the knowledge built in a system is very 
closely related to the gpecific sensor behavior during the 
learning procedure. Finally, gas mixture affirmation is the 
procedure of determining the exact gas concentration of 
the components of gas mixtures. Since the number of 

* Corresponding author. Tel.: +30 ! 7484621; fax +30 ! 7784578. 

component combinations are: infinite, only a few of them 
can be included in the learning procedure. 

In the case of classical neural network approaches, the 
system is very sensitive to the set of data used in the 
learning procedure. This is due to two reasons: the first is 
that the transition surfaces cannot be provided (i.e. are 
randomly selected) and the second is that the system is 
forced to answer with a 'yes' or 'no'. Moreover, these 
reasons are responsible for the poor stability of such sys- 
tems. The use of hybrid networks, including a back 
propagation network to perform feature extraction and a 
self organized map to perform classification has been 
found to improve system characteristics [1-3]. But again 
frequently calibration of such systems is needed to ensure 
system efficiency. 

A different approach to this problem can be obtained 
using fuzzy sets and fuzzy calculus. The main advantage 
of this approach is the flexibility of fuzzy logic which 
includes all the intermediates answers between the Boo- 
lean 'yes' and 'no'. An easy and efficient implementation 
of fuzzy logic is the fuzzy processor. As in logic proces- 
sor, neurons that perform the AND and OR operation in 
their inputs are used. Moreover, neurons are connected 
through weighted links, which again perform AND and 
OR operation with the weight. During training, these 
weights are calculated using a Back Propagation algo- 
rithm. Finally, the results of the operation of a fuzzy neu- 
ral network are presented. 
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2. Fuzzy  sets and fuzzy calculus 

2.1. Fuzzy sets 

define an s norm by: x s y = 1 - (1 - x )  t (1 - y )  (De Mor- 
gan law for fuzzy sets).All s and t norms satisfy the ine- 
qualities (3) and (4): 

In a normal set A whose elements are from a space X, 
the characteristic function of the set A is defined as 

1, i f x ~ A  
Z A: X ---* {0,1}, Z A (X) = 2, if X ~ A (1) 

A fuzzy set is a generalization of a normal set by forcing 
the charat=teristic function to take not only two distinct 
values (0 and 1) but every real value in [0,1]. Therefore, 
an element x of X can be 'less' or 'more' a member of the 
set A. All normal set operations (like intersection, union 
etc.) can be generalized and applied to fuzzy sets. For 
example, in normal sets the intersection is defined as 

Z ^,~a (x) = min(x ^ (x), X n (x))  92) 

The same is true for fuzzy sets also. For example, con- 
sider two fuzzy sets A and B, and an element x ¢ X. If 
Z^ = 0.6 and Zn = 0.2, then ZA,-m = 0.2. Moreover, this 
definition of fuzzy sets allows for the introduction of lin- 
guistic variables. For example, consider a set A and an 
ele~tent Xo with ZA(x0) = 0.8 l.Then, by taking the square 
root of the membership function of every element, we can 
produce a set B with ZB(Xo) = 0.9. This is an implementa- 
tion of the variable 'more'. 

2.2. s and t norms 

By a t norm we mean a function of two arguments: 

t:[O,I] x [0,1] -o [0,1] 

such that 
(i) for x < y and w < z then x t y ~ y t z (non-decreasing) 
(ii) x t y = y t x (commutative) 
(iii) (x t y) t z = x t (y t z) (associative) and 
(iv) x t O = O a n d x t  I =x. 

By an s norm we mean a function of two arguments 

s:[O,l] x [0,1] ~ [0,1] 

such that: 

(1) for x ~ y and w < z then x s y ~ y s z (non-decreasing) 
(ii) x s y = y s x (commutative) 
(iii) (x s y) s z = x s (y s z) (associative) and 
(iv) x s O = x a n d x s  1 = 1. 

It is clear that s and t norms are the generalizations of 
the logical OR and AND operations. This is derived from 
condition (iv) of the definition of s and t norms. Thus, 
any s (t) norm if applied to the set {0,1 } is exactly the OR 
(AND) operation. Moreover, for every t norm one can 

max(x, y) < x s y < 1 (3) 

0 < x t y < min(x, y) (4) 

These inequalities can be verified very easily using the 
conditions (iv) of the definition and the fact that s and t 
norms are non-decreasing functions. In Fig. 1, the effect 
of s and t norms is shown in two fuzzy sets A and B. 

2.3. Artificial intelligence and fuzzy sets 

In the field of artificial intelligence, all the informa- 
tion-processing procedures are symbolic; the symbols are 
manipulated via a collection of specific syntax rules. At 
the same time, the numerical information is essential ig- 
nored. In the numerical techniques, all the objects are 
plain numbers. They strive for precision, while their 
knowledge representation capabilities are non-existent. 
The artificial intelligence schemes of knowledge repre- 
sentation are powerful and diversified; however they do 
not cope with any numerical information. Fuzzy sets are 
placed in between. As a collection of objects, they are 
described by symbols (like for example small or large). 
Simultaneously, these symbols have a certain semantics 
attached to them that is conveyed by numerical character- 
istics described by numerical grade of membership. The 
level of precision as contrasted to generality can easily be 
modified by changing the number of linguistic labels and 
modifying their parameters. This enhances an ability to 
implem~nt principles of incompatibility and efficiently 
express the tradeoffs existing between achievable levels 
of precision and relevancy. As an example, consider the 
case of a simple controller. If the input in the controller 
(usually the error) is 'big', then it is almost certain that a 
'big' action has to be taken by the controller. The above 
sentence, although it provides a rule that is part of our 
knowledge and experience, it does not cope with any nu- 
merical information because (i) it does not provide a way 
to decide if a specific input is 'big' and (ii) it does not 
specify which action is 'big'. Fuzzy calculus solve this 
problem by assigning fuzzy sets to the linguistic 'big'. 

............-.... rm 

t.norm/" 

Fig. 1. Effect of  s and t norms on fuzzy sets. 
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Fig. 2. Fuzzy neural network topology. 

(iv) a fuzzy processor which is built by a combination of 
neurons. As shown in Fig. 2, there are three levels of 
neurons. The input level neurons (ID perform an 
equality test to their input. This test compares the in- 
put pattern to a predefined one which can be the 
zero-grade-air response of the sensor array. 

The hidden level nodes (Ht) perform an AND opera- 
tion to their input. The operation is evaluated with a t- 
norm. The output level nodes perform an OR operation to 
their input. The operation is evaluated with an s-norm. 
The connections from the input layer node k to the hidden 
layer node I perform an OR operation with the output of 
input-layer-node k and the connection weight wkt. Finally, 
the connections between the hidden layer node ! and the 
output layer node m perform an AND operation with the 
output of hidden-layer-node l and the connection weight 
I)lm. 
(v) a defuzzification block in order to produce a consid- 

erable output. Defuzzification or contrast intensifica- 
tion (INT), affects an original fuzzy set by suppress- 
ing grades of membership lower than 1/2 and ele- 
vates values greater than this threshold. An evalua- 
tion of INT is given by 

Then, it is possible to decide (i) if a specific input belongs 
to the fuzzy set 'big input' and (ii) which action belongs 
to the fuzzy set 'big action'. Consequently, the rule 'if 
(big input) then (big action)' can be applied in every con- 
troller. The only thing that changes from application to 
application is the exact implementation of the fuzzy sets 
'big input' and 'big output'. It is obvious that these sets 
have to be determined by the application specific aspects. 

3. Fuzzy neural network topology 

As it is shown in Fig. 2, a general fuzzy neural net- 
work topology is buildt by 
(i) a sensor array as in classical neural networks 
(ii) a normalization block which is necessary in the case 

of fuzzy calculations. Thus, each input value is re- 
stricted to the set [0,1 ]. 

(iii) a fuzzification block. This is usually obtained by 
'softening' the input. A common implementation of 
fuzzification is 

xA(x)<½ 

otherwise 

(5) 

At, example of this operation to a fuzzy set is shown 
in Fig. 3a. The output of this block also produces the 
complement of each variable so the processor can use 
it as in usual logic processors. 

I2 p-I X p (X), 

X INT(A)(X) ' -  [1- 2 p-I (1-~ A (X) p '  

i i f x A  <-~- (6) 
otherwise 

By controlling the parameter p, one can make the intensi- 
fication operation more radical. An example of this op- 
eration to a fuzzy set is shown in Fig. 3b. 

(a) 

(c) _ I 

(b) A 

Fig. 3. Effect of different operations on fuzzy sets (continuous lines). 
(a) fuzzification (discontinuous line), (b) contrast intensification 
(discontinuous line), © the result of Boolean equality test 
(discontinuous line) in two fuzzy sets (continuous line) and (d) the 
result of fuzzy equality test (discontinuous line) in two fuzzy sets 
(continuous lines). 



80 D. Vlachos, J. Avaritsiotis / Sensors and Actuators B 33 (1996) 77--82 

4. Learning procedure 

The training of the fuzzy neural network is evaluated 
with a back propagation algorithm. Each time a valid in- 
put pattern is presented at the input, the output is calcu- 
lated and compared with the desired one. The connection 
weights then are modified in order to minimize the error. 
Let Dm be the desired output and Y,,, the calculated one. 
Then the error E is given by: 

M M 

m=l m=! 

(7) 

Note here that the equality test in the above equation re- 
turns all the intermediates answers between 'yes' and 
'no'. In Fig. 3c and d, the results of the Boolean equality- 
test and the fuzzy equality-test are shown. Moreover, 
since the dependence of the error function deviation on 
the connection weights incorporates both the functions 
that evaluate the s and t norms and their derivatives, the 
network performance is a substitute for both of them. 

5. Experimental results 

Two types of experiments were carried out; the first 
one was for the identification of the active gas between 
CO, ethanol and methane, and the second one was for the 
elimination of the humidity interference in CO sensing. In 
the first experiment six tin oxide based gas sensors were 
used as the input sensor array. The input layer consists of 
thirteen nodes (two nodes for each sensor to include the 

complement and one for bias). The hidden layer consists 
of nineteen nodes, one of them was used for bias. The 
network produces three outputs (three neurons at the out- 
put layer) one for each gas of interest. The learning data 
consists of the sensor response in different concentrations 
of CO, ethanol and methane. Only one gas was present at 
each time. The network output is shown in Fig. 4. 

In the second experiment, again six tin oxide based gas 
sensors were used as the input sensor array. The hidden 
layer consists of 17 nodes, one of them was used for bias. 
The network produces one output (one neuron at the out- 
put layer), showing the CO concentration. The learning 
data consists of the sensor response in different CO con- 
centrations at different levels of relative humidity. The 
output of the system is shown in Fig. 5. 

6. Discussion 

6.1. Network performance 

In the case of active gas identification, the network 
quickly learns to distinguish the three gases of interest. 
Moreover, as it is shown in Fig. 4, the output of the net- 
work depends on gas concentration also. This can be 
considered as an improvement over the classical neural 
networks, which are trained to answer only with a simple 
'yes' or 'no'. Each network output is educated to respond 
in a specific gas. Ethanol and CO affect the other outputs 
since the sensor response to these gases is considerably 
more significant than the sensor response to methane. 

In the case of water vapor interference elimination on 
CO sensing, the one network output was educated to give 
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Fig. 4. Fuzzy neural network output for different testing conditions. CO- is 100 ppm CO, CO is 500 ppm CO, CO+ is 1000 ppm CO, Ethanol- is 10 
ppm ethanol, Ethanol is 20 ppm ethanol, Ethanol+ is 30 ppm ethanol, Methane- is 500 ppm methane, Methane is 1000 ppm methane and Methane+ is 
l ~ I~m methane. 
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Fig. 5. Fuzzy neural network output and output error for different CO 
concentrations in various levels of relative humidity. 

a linear measure of CO concentration, assigaing the zero 
output to 0 ppm CO concentration and the value 1 to 
1000 ppm CO concentration, neglecting the level of rela- 
tive humidity. Here the learning stage was very long since 
the network had to suspend the water vapor effect. As 
shown in Fig. 5, the error in network response (i.e. the 
difference between the actual value and the desired value) 
remains close to zero for small concentrations of CO. For 
concentrations above 800 ppm, the error increases and 
this can be assigned to the non-linear dependence of tin 
oxide based gas sensors on CO concentration. Anyway, 
this can be improved further by increasing the amount of 
learning data. This is a general remark on fuzzy systems, 
since the knowledge capacity of such systems is infinite. 

6.2. Effect o f  s and t norm implementation. 

Inequalities (3) and (4) are very important in the selec- 
tion of the specific functions evaluating the s and t norms. 
Since the sets of all s and t norms are bounded one can 
define an ordering relationship in these sets. Having in 
mind inequalities (3) and (4), it is obvious that all s (t) 
norms are between the max (min) function and the con- 
stant 1 (0) function. A rain-max configuration (i.e. using 
the max function for the implementation of s norm and 
the min function for the t norm) gives very fast learning 
but is very sensitive to noise because of the abrupt transi- 
tion of rain and max derivatives. On the other h~md, the 
implementation of s and t norms by constant ~unctions 
(giving 1 and 0, respectively), although very stable, it 
never learns the intermediate answers. The optimum se- 
lection is somewhere in the middle. That is, the functions 
evaluating the s and t florins must both have 'soft' de- 
rivatives in order to make stable networks ~i..e. eliminat- 
ing abrupt transitions observed in mr  -max configura- 
tion) and cover the entire [0,1 ] space in order to increase 

the knowledge capacity of the system, which is zero in 
the case of the implementation of s and t norms by con- 
stant functions. 

6.3. Comparison with back propagation network 

Using a simple back propagation network instead of a 
fuzzy one, the results from comparison between the two 
topologies may be summarized in the following: 
(i) in the case of gas identification, the back propagation 

network learns quickly to distinguish between the 
three gases, as in the case of fuzzy network. The only 
difference is that the output of the back propagation 
network does not follow the gas concentration. 

(ii) in the case of water vapor interference elimination on 
CO sensing, it was found impossible to train a back 
propagation network with a single output. This hap- 
pens because during training, the network output was 
forced to take all the intermediate values between 0 
and 1, in order to follow the CO concentration. Since 
the activation of the output neurons are described by 
a sigmoid function with relative abrupt transition 
from 0 to 1, the network was driven to local mini- 
mums where ttie output remains constant for every 
input pattern. 

(iii) It was possible to train a back propagation network to 
recognize the amount of CO concentration at differ- 
ent levels of relative humidity by the following way: 
A network with five output neurons was used. The 
first neuron was activated when the concentration of 
CO was lower than 200 ppm, the second was acti- 
vated if the concentration of CO was between 200 
and 400 ppm and so on. 

7. Conclusions 

Fuzzy neural networks can he successfully used as 
pattern recognition systems in gas sensing. Their main 
advantages compared to back propagation networks are: 
(i) they do not suffer from abrupt transitions since they 
are not restricted to discrete answers, (ii) they can be edu- 
cated very efficiently by increasing the amount of learn- 
ing data and (iii) they can store a great deal of informa- 
tion that is very difficult to represent with classical neural 
networks. 
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