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Abstract

Optimization of ship routing depends on several parameters, like ship and
cargo characteristics, environmental factors, topography, international nav-
igation rules, crew comfort etc. The complex nature of the problem leads
to oversimplifications in analytical techniques, while stochastic methods like
simulated annealing can be both time consuming and sensitive to local min-
ima. In this work, a hybrid parallel genetic algorithm - estimation of distri-
bution algorithm is developed in the island model, to operationally calculate
the optimal ship routing. The technique, which is applicable not only to
clusters but to grids as well, is very fast and has been applied to very diffi-
cult environments, like the Greek seas with thousands of islands and extreme
micro-climate conditions.
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1. Introduction

Optimization of ship routing is closely related to both ship characteris-
tics and environmental factors and has a significant influence on economical,
safety and comfort considerations. Ship size, speed capability and type and
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scheduling of cargo are important considerations in the route selection pro-
cess prior to sailing and the surveillance procedure while underway. Ship’s
characteristics identify its vulnerability to adverse conditions and its ability
to avoid them while cargo type and scheduling identify the safety standards
that have to be fulfilled and the economical impact of a certain route [1].

On the other hand, environmental factors of importance to ship routing
are those elements of the atmosphere and ocean that may produce a change in
the status of a ship transit. In ship routing, consideration is given to wind,
waves, fog and ocean currents. While all of the environmental factors are
important for route selection and surveillance, optimum routing is normally
considered attained if the effects of wind and waves can be optimized. More
details about the effect of environmental factors can be found in [2].

The problem of calculating an optimal or near optimal ship route grows
very fast in complexity with the inclusion of several realistic constraints, like
the existence of islands, international or national navigation rules, micro-
climate and local parameters, etc. Any trial for an efficient analytical so-
lution soon will be locked in oversimplifications, while heuristics have been
proved, during the last years, capable to achieve acceptable solutions in such
complicated problems. See for example the Traveling Salesman Problem ([3]
and [4]), the Time-Table Problem ([5]), the Quadratic Assignment Problem
([6],[7],[8] and [9]), the Job Shop Scheduling Problem ([10],[11],[12],[13] and
[14]), the Airline Scheduling Problem ([15]) and others. The best results
found for many practical or academic optimization problems are obtained by
hybrid algorithms. Combination of algorithms such as descent local search
[16], simulated annealing [17], tabu search [18] and evolutionary algorithms
have provided very powerful search algorithms.

Beyond the complexity of the optimal ship routing problem, one has to
deal with the necessity to build a system that can respond to user requests
in a reasonable amount of time. A user may identify himself which means
that the system has registered information about the user’s ship. After that,
the user gives its departure and arrival locations with the desired departure
time. The system responds with the optimal route calculated, taking into
account the user’s requirements (for example, small and medium ships are
more interested in safety and comfort, while storeships are interested in fuel
consumption and cargo scheduling). In any case, the response should be
provided immediately (after a few seconds) otherwise, it is very likely that
users exhibit disinclination in using the system.

Finally, one has to take special care for the well-known exploration-
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exploitation trade-off. Exploration is needed to ensure every part of the
search space is searched thoroughly in order to provide a reliable estimate
of the global optimum. Exploitation is important since the refinement of
the current solution will often produce a better solution. Consider the case
where in a given landscape with mountains and valleys, one wants to calcu-
late the shortest path between two given points. In order to roughly locate
this path, one has to observe the landscape from a long distance, so he can
obtain a general idea of all the possible routes in the landscape. Thus, in our
example, exploration means to observe from far away. On the other hand,
after locating the possible optimal route, on has to take a closer look at the
landscape in order to locate local obstacles and obtain a fine tuning of his
path. Thus, exploitation in our example means to observe nearby. It is clear
that exploration and exploitation are two competing tasks. Population-based
heuristics (where genetic algorithms [19] and estimation of distribution al-
gorithms [20] are found) are powerful in the exploration of the search space,
and weak in the exploitation of the solutions found.

The integrate solution of the aforementioned difficulties (lots of con-
straints, immediate response and exploration-exploitation trade off) in the
optimal ship routing problem is the aim of this work. The material is orga-
nized as follows: In section 2, a brief review of the optimal ship routing prob-
lem is given. In section 3, a detailed description of the proposed algorithm
is given. Section 4 summarizes experimental results, while the conclusions of
the implementation of the new algorithm are presented in section 5.

2. The optimal ship routing problem

Let us assume that an initial route of a ship is represented by a smooth
curve ~r(s) (Fig. 1) where the parameter s is the arc length measured from
some fixed point A (initial point of the ship route). Then, the tangent vector
of the curve of the ship’s route in the point of question is defined as

~t =
~̇r

|~̇r|
=

d~r

ds
(1)

where ~̇r is the ship’s velocity.
We also assume that the moving ship is subject to the influence of the

wave height and direction represented by the vector ~w and the wind speed
and direction represented by the vector ~v.
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Under the above assumptions we define a route cost (a scalar quantity)
assigned at every possible route between two points. The route cost includes
a weighted combination of the voyage time and the safety (or comfort) of the
voyage. The total cost S is given by

S = aT + (1− α)C (2)

where T is the total voyage time and C is a scalar characterizing the safety
(comfort) of the voyage. The weight α can be tuned by the user depending
on his demands. Note here that when α = 1, then the only optimization
parameter is the voyage time while when α = 0, the only optimization pa-
rameter is the crew comfort. The scalar C is calculated as a line integral
over the route by the following way (up to the linear approximation):

C =

∫

B

A

(~vTZv + ~wTZw)~tds (3)

where ~v is the wind vector, ~w is the wave height vector and Zv and Zw are
tensors which characterize the ship response to wind and wave, respectively.
The calculation of the total voyage time T , is a bit more complicated, since
both wind and waves can alter the speed of the ship. In general we can write
that

| ~̇r(r)| = u+ F (~v, ~w,~t) (4)

where u is the speed of the ship in zero wind and F is a function that depends
on ship characteristics, wind, wave and direction of the ship movement. For
simplicity in the present work, we assume that F = 0. Moreover, we assume
that a candidate route can be represented as a set of way-points, while the
path between two successive way-points is always a straight line (or a great
circle on the globe). Obviously, the coordinates of the way-points is the
objective of the search process. Without loss of generality, we assume that
the departure and arrival points lay on the horizontal axis (if not, we can
always rotate the coordinate system). In order to minimize the search space,
we can assume that the horizontal positions of the way-points are fixed,
and the objective of the search process is the determination of the vertical
coordinates of the way-points. This simplification not only is acceptable but
is indicated from the fact that the environmental parameters who affect the
optimal route are known in a grid (the grid of the forecasting model used to
account for the state of the sea during the next hours or days). Therefore,
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more than one way-points in the neighborhood of a grid point cannot be
optimized efficiently (since no extra information is available for these points
from the forecasting model).

3. The new algorithm

As it was mentioned before, there are three main difficulties that one
has to overcome, in order to produce an efficient and operational algorithm
for the optimal ship routing. In the following, a detailed view of how the
proposed algorithm handles them is presented.

3.1. Constraints in ship routing

Constraints in ship routing arise from the existence of obstacles (islands)
and general international or national navigation rules. The penalty encoding
method perhaps is the most popular approach used in Genetic Algorithms
for constrained optimization problems because of its simplicity and ease of
implementation ([21],[22],[23],[24],[25] and [26]). On the other hand, one can
take extra actions in order to limit the members of the population in the
feasible region of the search space. There are several techniques that have
been proposed, from modified mutation and crossover operation, with the
property that they only produce feasible offsprings from feasible parents to
the death penalty method, in which a member is destroyed, if it violates a
certain constrain. But in the case of the optimal ship routing this method is
almost unapplicable. The reason is the large numbers of constraints (islands)
which makes extremely difficult to design mutation and crossover operators
which produce feasible offsprings. A nice short review of proposed methods
for handling constraints in genetic algorithms with selected references can be
found in [27].

3.1.1. General penalty formalism

In Fig. 2 a route between two points A and B is shown. This route
crosses an obstacle and divides it into two parts, S1 and S2. In order to
assign a constrain with the obstacle, we calculate the ratio

h = −
min{S1, S2}

max{S1, S2}
= −

S1

S2

(5)

If the route does not cross the obstacle, then the area of S1 is zero and that
of S2 is the area of the whole obstacle. Thus, the parameter h takes the value
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0 if the route does not cross the obstacle and a negative value otherwise. In
the case where the obstacle is divided in exactly two equal areas, h takes the
value −1, which is the smaller value that can be assigned to h. It is clear
now, that whatever are the actions of the optimization algorithm, the value
of h has to be increased. Moreover, this encoding of the constraint shows us
the direction of the change that have to be induced in the route. As it is
shown in Fig. 2, the dashed route decreases the value of h, while the dotted
one increases it.

Consider now that we have N obstacles and for each one of them we
calculate the parameter h. Then, for a feasible solution the following equation
must hold:

hi = 0 , i = 1, ..., N (6)

On the other hand, there is another type of constraints which are caused
by a practical inability of a ship to follow abrupt changes in the movement
direction. If we force the ship to take sharp turns, then this might cause
safety problems especially in heavy seas. Consider a route which is composed
by straight lines joining the way points P0, P1, ..., PM , where P0 and PM is
the starting and ending point respectively. For each part of the route, we
calculate the direction vector di

di =
Pi −Pi−1

|Pi −Pi−1|
, i = 1, ...,M (7)

where Pi is the position vector of point Pi. Then, for a feasible solution we
want that

gk = cos−1
(

dk · dk+1
)

− φmax ≥ 0 , k = 1, ...,M − 1 (8)

where φmax is the maximum allowed turn that the ship can take. Thus, for
a given route ~x we have two types of constraints, i.e. N equalities hi(~x)
and M − 1 inequalities gk(~x) (equations (6) and (8) respectively). Note here
that a route is represented by a vector containing the M + 1 way points
P0, P1, ..., PM . If now δ(x) is the Dirac delta function and u(x) is the step
function with

u(x) =
{

1 , x ≥ 0
0 , x < 0

(9)

then the ideal penalty function for a configuration ~x is given by:

p(x) =
1− u(g(~x))

u(g(~x))
+

1

δ(h(~x))
(10)
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where:

• the first term is zero, if the inequalities g hold and tends to infinity
otherwise

• the second term is zero, if equalities h hold and tends to infinity oth-
erwise

3.1.2. Smooth penalty formalism

Instead of using the discontinuous functions u(x) and δ(x), we can ap-
proach them with the C∞ functions

ûa(x) =
{

1− e
−1

1
(ax)2 , x < 0

1 , x ≥ 0
(11)

and

1

δ̂a(x)
=

{

1

e

1
(ax+1)2

−1

, x < − 1

a

0 , − 1

a
≤ x ≤ 1

a
1

e

1
(ax−1)2

−1

, x > 1

a

(12)

where both ûa(x) and δ̂a(x) tend to u(x) and δ(x) respectively when a → ∞.
The penalty function is given now

P (~x) =
1− ûa(g(~x))

ûa(g(~x))
+

1

δ̂b(h(~x))
(13)

for some given a, b. It can be easily shown that both functions ûa and δ̂−1

b
are

C∞ functions everywhere in R. Furthermore, an obvious advantage of these
two functions is that although they are smooth, they add no penalty at all
to feasible solutions. Figure 3 shows the functions ûa and δ̂−1

a for different
values of a.

3.1.3. Complex cost function

Let us assume now that the problem under consideration can be reduced
to the minimization of the everywhere positive function S(~x) given by equa-
tion (2). Consider the complex function Λ(~x):

Λ(~x) = S(~x) + i · P (~x) (14)
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Minimization of |Λ(~x)| is now equivalent to our problem. A feasible solution
to our problem must lie on the real axis (in our case it is the x-configuration
space). This can be smoothly achieved by considering the generalized cost
function E given by:

E(~x) = |Λ(~x)| · ρ(λ,Λ(~x)) (15)

where the multiplicative term ρ is given

ρ(λ,Λ) =
{ 1 + 1

e

1
(λIm(Λ)−1)2

−1

, Im(Λ) > 1

λ

1 , 0 ≤ Im(Λ) ≤ 1

λ

(16)

It is clear now that we restrict the feasible space in the zone 0 ≤ P (~x) ≤ 1

λ
.

Finally, a sort of annealing is introduced here, pushing λ to ∞ and thus
moving the solution to the real axis which is the feasible space of the problem.

3.2. Operational principles

Having in mind that a route may contains 10 to 20 way points as it
will be explained later and the search space is the Eastern Mediterranean
with hundreds of islands, we find that a candidate solution has to fulfill
hundreds of constraints, which makes the implementation of the algorithm
to a single computer impractical. Fig. 4 shows the application of a typical
genetic algorithm with 8-bit encoding for each way point, 10 way points for
each route and the penalty method described earlier. In these experiments,
the parameter λ of equation (15) had the same value as the parameter a of
equations (11) and (12). Finally, the experiment was carried on a Pentiumr

4 at 2.4GHz. This experiment tests the quality of the solution depending on
the annealing rate and thus on the cpu time. It is clear that the algorithm
is sensitive to the rate of annealing, while for slow annealing, although we
obtain good solutions, the computational time is inhibitory.

The use of a parallel system or a grid of computers is thus necessary in
order to obtain practical response times. Two approaches have been tested.
The first one is to facilitate the searching mechanism by pre-calculating all
the possible bypasses of the obstacles between the first and last way points.
For each one of the pre-calculated routes, we generate a population of routes
that are close to the initial ones. Each population is evolved using a death
penalty mechanism for handling the constraints. Finally, the best solution
is selected. The results of this approach are shown in Fig. 5a. The cost
of the final solution is drawn as a function of time, for several numbers of
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obstacles between the first and last way point. In Fig. 5b the speedup of
the implementation of the method in a cluster with 8 nodes is shown. Since
for every obstacle added between the first and final way point the number of
possible bypasses are doubled, this method fails for long routes which have
to bypass tenths of islands.

The second approach to the problem is based on the synergetic action
of two algorithms, the genetic algorithm and the estimation of distribution
algorithm, as it will be explained in details in the following paragraphs.

3.3. The exploration exploitation trade-off

The first difficulty which arises in the optimal ship routing is the large
dimension of the search space. Consider the case where we want to approx-
imate the optimal solution between two points which lie on the x-axis with
a set of M way points between the first and the last one. As it was men-
tioned before, it is reasonable to fix the x-coordinate of the way points and
try to optimize the y-coordinates of the way points. Thus the search space
is M-dimensional. Since we are using forecasting data for the sea state and
wind and a typical grid size for such forecasting models is 0.1o, a set of 20
way points will be adequate to cover every small or medium size ship voyage.
Moreover, it is reasonable to bound the y-coordinates of the way points in a
rectangle with the size of the edge parallel to the x-axis to be the distance
between the first and last way point and the size of the edge parallel to the
y-axis to be double. If we use a binary encoding for every y-coordinate with
n-bits, then the search space is divided in M · 2n cells with surface area ∆S

given

∆S =
d2

M · 2n−1
(17)

where d is the distance between the first and last way points. The value of
∆S is a measure of the exploration-exploitation of the genetic algorithm. A
large value for ∆S will soon produce a solution which locates in general the
limits of the y-coordinates, while a small value for ∆S will produce a fine
tuning of a given route.

This observation lead us to the construction of several population with
different size in the bit encoding of the y-coordinates. Moreover, population
are organized in a hierarchical network, in which members of populations with
l bits per coordinate in the bit encoding can migrate only to populations with
l′ ≥ l bits per coordinate. The result of this approach is that the populations
in the upper levels of the network converge fast to solutions (due to the
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small number of cells in the search space that they have to look in) and this
information is forwarded in population of lower levels in the network, where
fine tuning (exploitation) is performed.

3.4. Hybrid GA-EDA Algorithms

The final part of the proposed algorithm is the way that members from
one population can migrate to another. The hybrid GA-EDA (genetic algo-
rithm - estimation of distribution algorithm) technique is used. The benefits
of this approach are (a) the saving of communication time between parallel
processes and (b) the inclusion of an extra searching mechanism. More specif-
ically, since members from one population have to migrate in order to carry
information about the search space, the amount of data that are transferred
between processes affect dramatically the speedup of the parallel algorithm
(the communication time is at least four orders of magnitude bigger than the
processing time). Thus it is by far more efficient to migrate the distribution
function of the genes of the members than the members themselves.

On the other hand, the original objective is to get benefits from both
approaches. The main difference from these two evolutionary strategies is
how new individuals (offsprings) are generated. Our new approach generates
two groups of offspring individuals, one generated by the GA mechanism
and the other by EDA one. GAs use crossover and mutation operators as a
mechanism to create new individuals from the best individuals of the previ-
ous generation. On the other hand, EDA builds a probabilistic model with
the best individuals and then samples the model to generate new ones. Pop-
ulation p + 1 is composed by the best overall individuals from (i) the past
population, (ii) the GA-evolved offspring, and (iii) EDA-evolved offspring.
The individuals are selected based on their fitness function. This evolution-
ary schema is quite similar to Steady State GA in which individuals from
one population, with better fitness than new individual from the offspring,
survive in the next one.

4. Experimental results

In order to test the proposed algorithm, the optimal route is calculated
from the port of Thessaloniki (40.5197N, 22.9709E) to the port of Ag. Niko-
laos (35.1508N, 25.7227E). Forecast data are taken from climate databases.
There are more than 20 islands which give more than 220 ways to bypass
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them. Fig. 6 shows the cost of the calculated route as a function of com-
putational time and this is compared to the cost of a route calculated using
simulated annealing. The cost of the shortest path is also drawn in the same
figure. The proposed algorithm gives operational results in at least 2 orders
of magnitude less time than simulated annealing. Finally these results have
been reproduced several times using variable environmental conditions.

5. Conclusion

In this work a hybrid evolutionary method based on genetic algorithms
and estimation of probability distribution algorithm has been designed and
implemented to deal with the problem of optimal ship routing. The large
number of constraints lead us to the development of a parallel system in
order to produce good solution in reasonable times and thus integrate this
method in an operational advisory system. The basic parts of the method
are:

1. A smooth penalty function has been constructed to deal with con-
straints which by using an annealing mechanism forces the searching
to be bounded in the feasible area of the search space.

2. In order to account with the dependence of the convergence of the algo-
rithm on the annealing rate, different populations evolve with different
annealing rates. This, in combination with the exchange of groups of
members between the populations, unlocks the algorithm from the local
minima.

3. In order to handle the exploration exploitation trade-off, different popu-
lations evolve with different binary encoding, while all of them cover the
whole searching space. Populations with smaller size in bit representa-
tion of the solution have a better exploration performance, while those
with larger size have better exploitation capabilities.

4. Information between populations are exchanged using the estimation of
distribution algorithm. This, not only decreases the communication cost
between the nodes of the parallel system, but includes an extra mutation
operation which improves the searching capabilities of the algorithm.

Experimental results both from simulation and real data show that the sys-
tem meets its specifications and thus could be used in operational mode.
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Figure 1: A route from point A to point B. r(s) is the parametrization of the route, and
w, v are the wave and wind vectors respectively and tk is the tangent to the route at point
k.
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Figure 2: A route from point A to point B which crosses an obstacle (solid route). The
obstacle is divided by the route into two areas, S1 and S2. The ratio of the smaller area
to the larger one, is decreased in the right direction (dashed route) while is increased in
the opposite direction (dotted route).
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Figure 6: The cost of the optimal route from the port of Thessaloniki (40.5197N, 22.9709E)
to the port of Ag. Nikolaos (35.1508N, 25.7227E), calculated by the proposed GA-EDA
algorithm (∗) compared to the cost of the route calculated using simulated annealing (×).
The cost of the shortest path is drawn too (solid line).
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