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a b s t r a c t

A new approach for constructing variational integrators is presented. In the general case,
the estimation of the action integral in a time interval [tk, tk+1] is used to construct
a symplectic map (qk, qk+1) → (qk+1, qk+2). The basic idea, is that only the partial
derivatives of the estimated action integral of the Lagrangian are needed in the general
theory. The analytic calculation of these derivatives, gives rise to a new integral that
depends on the Euler–Lagrange vector itself (which in the continuous and exact case
vanishes) and not on the Lagrangian. Since this new integral can only be computed through
a numerical method based on some internal grid points, we can locally fit the exact
curve by demanding the Euler–Lagrange vector to vanish at these grid points. Thus, the
integral vanishes, and the process dramatically simplifies the calculation of high order
approximations. The new technique is tested in high order solutions of the two-body
problem with high eccentricity (up to 0.99) and of the outer planets of the solar system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the dynamics of conservative systems inmechanics, physics, biology, and chemistrymay accurately
be described within the Hamiltonian formalism [1,2]. An important property of the Hamiltonian flow (or solution to
a Hamiltonian system) is that it preserves the Hamiltonian and the symplectic form (see, for example, Ref. [3]). A
key consequence of symplecticity is that the Hamiltonian flow is phase-space volume preserving (Liouville’s theorem).
Since analytic expressions for the Hamiltonian flow are rarely available, approximations based on time discretization are
used [4–6]. A numerical integration method that approximates a Hamiltonian flow is symplectic if it discretely preserves a
symplectic 2-form to within numerical round off [2,4,7], otherwise is called standard.

By ignoring the Hamiltonian structure, a standard method often introduces spurious dynamics, an effect which is
excellently illustrated in Ref. [8] where the computation of a Poincaré section shows that the standard method artificially
corrupts phase space structures by exhibiting a systematic drift in the invariant tori of the spherical pendulum, whereas
variational Euler procedure preserves them [9]. Moreover, in systems that are non-integrable, symplectic integrators often
operate much better even compared with projection methods, where the calculated values are projected in the manifold
defined by the constant symplectic structure. Finally, as shown in Ref. [10], in many body problems, the symplectic
integrators perform increasingly better than standard methods as the number of integration points increases [6,9,11].

Symplectic integrators can be derived by a variety of ways [12,13]. Early investigators, guided by Hamilton–Jacobi
theory, constructed symplectic integrators from generating functions which approximately solve the Hamilton–Jacobi
equation [2,4,7]. Moreover, the symplectic splitting technique is based on the property that symplectic integrators form a
group, and thus, the composition of symplectic-preserving maps is also symplectic. Here the idea is to split the Hamiltonian
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into terms whose flow can be explicitly solved and then compose these individual flows in such a way that the resulting
(composite) flow is consistent with the Hamiltonian flow [5].

On the other hand, variational integration techniques determine integrators from a discrete Lagrangian and the
associated discrete variational principle [9,14–16]. The discrete Lagrangian can be designed to inherit the symmetry
associated with the action of a Lie group, and, hence by a discrete Noether’s theorem these methods can also preserve
momentum invariants. For an extended discussion of the above statements, see Refs. [1,17,18].

In the presentwork, we propose a new approach for the construction of variational integrators based on the fact that only
the partial derivatives of the action integral of the Lagrangian are needed in the general theory. The analytic calculation of
these derivatives, creates a new integral that depends not on the Lagrangian itself, but on the Euler–Lagrange vector, which
in the continuous and exact case vanishes. Since this new integral can only be computed through a numerical method
relying on some internal grid points, we can locally fit the exact curve by demanding the Euler–Lagrange vector to vanish at
these grid points. In this way, the integral vanishes, and the process tremendously simplifies the calculation of high order
approximations.

In the rest of the paper, at first (Section 2), the main characteristics of the discrete variational integrators are briefly
outlined and the formalism of the local path fitting method is presented (Section 3). Then, an application of the new
method and its role to the harmonic oscillator and to orbital problems with ultra high eccentricity (ϵ = 0.99) is addressed
(Section 4). The benefits of the improved integrator are demonstrated in the numerical solutions of the 2-body problem and
the mechanical system of five outer planets (Section 5). Finally the main conclusions coming out of the present work are
briefly summarized (Section 6).

2. Discrete variational mechanics

Within the context of the variational integration theory, one derives integrators for mechanical systems coming out of
the discrete variational principles [6,9,14,19]. Variational principles have been successfully applied to partial differential
equations and to stochastic systems as well. In the general theory, discrete analogs of the continuous Lagrangian,
Euler–Lagrange equations, Hamilton’s principle, Noether’s theorem, and Legendre transform can be rather easily obtained
(see e.g. Refs. [9,20]). Moreover, variational integrators can readily incorporate holonomic constraints (through the use of
Lagrange multipliers) and non-conservative effects (via their virtual work) [9,14].

Recently, variational principles have been applied to particle mesh methods and to fractional stochastic optimal control
problems [21–23]. The algorithms derived from these discrete principles have been successfully tested in infinite and finite-
dimensional conservative, dissipative, smooth and non-smoothmechanical systems (see e.g. Refs. [15,16] and the references
therein).

In the general approach, the relevant variational principle creates an estimation of the action integral in a time interval
[t0, t1] as a smooth function of the edges of a segment of the system’s trajectory (q0, q1). Since any sufficiently smooth and
non-degenerate function S(q0, q1) generates, via

p0 = −
∂S(q0, q1)

∂q0

p1 =
∂S(q0, q1)

∂q1
,

a symplectic map (q0, p0) → (q1, p1) [24], the estimated action integral can be used to develop a discrete analog to the
continuous Euler–Lagrange equations as it is briefly outlined below.

The well known least action principle of the continuous Lagrange–Hamilton dynamics can be used as a guiding principle
to derive discrete integrators, [9,14,20]. For this purpose, one considers the positions q0 and q1 and a time step h ∈ R (h =

t1 − t0), in order to replace the parameters of position q and velocity q̇ in the continuous time Lagrangian L(q, q̇, t). Then,
by taking the variable h as a very small (positive) number, the positions q0 and q1 could be assumed as being two points on
a curve (trajectory of the mechanical system) at time h apart. Under these assumptions, the following approximations hold

q0 ≈ q(0), q1 ≈ q(h),

and a function Ld(q0, q1, h), known as discrete Lagrangian, is defined to approximate the action integral along the curve
segment with endpoints q0 and q1, as

Ld(q0, q1, h) =

 h

0
L(q, q̇, t)dt. (1)

Furthermore, one may consider the very simple approximation for this integral given on the basis of the rectangle rule [9]
according to which

 h
0 Ldt ≈ hL, where the value of L is obtained by replacing the velocity q̇ with the approximation

(q1 − q0)/h.
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The next step is, by considering the discrete curve defined by the set of points {qk}Nk=0, to calculate the discrete action
sum Sd along this sequence of segments, [qk, qk+1], k = 0, 1, . . . ,N − 1, by summing the discrete Lagrangians of the form
Ld(qk, qk+1, h) defined for each adjacent pairs of points (qk, qk+1), as

Sd(γd) =

N
k=1

Ld(qk−1, qk), γd = (q0, . . . , qN−1) ∈ Q n (2)

where γd is a discrete trajectory of the mechanical system. The discrete Hamilton’s principle states that, γd extremizes the
action sum, i.e., δSd(γd) = 0. By carrying out the differentiation and rearrangement of the terms in the latter equation,
keeping in mind that the endpoints q0 and qN are fixed, the discrete Euler–Lagrange (DEL) equations are obtained:

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0 (3)

where the notation DiLd denotes the slot derivative with respect to the i-th argument of Ld.
From a geometrical point of view, for the discrete Lagrangian Ld we have Ld : Q × Q → R, where Q is the space of

generalized positions q. Hence, in the discrete setting the corresponding space for the velocity (phase space TQ ) is Q × Q .
An intuitive motivation for this is that two points close to each other correspond approximately to the same information as
one point and a velocity vector [9].

We can define now the map Φ : Q × Q → Q × Q , by

D1Ld ◦ Φ + D2Ld = 0 (4)

which means that Φ(qk−1, qk) = (qk, qk+1). Hence, if for each q ∈ Q , the map D1Ld(q, q) : TqQ → T ∗
q Q is invertible, then

D1Ld : Q × Q → T ∗Q is locally invertible and so the discrete flow defined by the map Φ is well defined for small enough
time steps (see Ref. [17] for details). Moreover, we define the known as fiber derivative

FLd : Q × Q → T ∗Q (5)

and the two-formω onQ ×Q by pulling back the canonical two-formΩCAN = dqi∧dpi from T ∗Q toQ ×Q , by the expression

ω = FLd
∗(ΩCAN). (6)

The coordinate expression for ω is

ω =
∂2Ld(qk, qk+1)

∂qik∂q
j
k+1

dqik ∧ dqjk+1 (7)

and it can be easily proved that the map Φ preserves the symplectic form of ω (two different proofs are presented in
Refs. [14,18]). Finally, assuming that the discrete Lagrangian is invariant under the action of a Lie group G on Q and in
its cotangent space ξ ∈ g defined in the Lie algebra of G, by analogy with the continuous case, we can construct the discrete
momentum map Jd : Q × Q → g∗ by

⟨Jd(qk, qk+1), ξ⟩ :=

DaLd(qk, qk+1), ξQ (qk)


. (8)

As can be proved, the map Φ preserves the momentum map Jd; see e.g. Refs. [14,17].
In a position-momentum representation, the discrete Euler–Lagrange equations (3) can be written in the form [9]

pk = −D1Ld(qk, qk+1, h)

pk+1 = D2Ld(qk, qk+1, h). (9)

In the next section, a new variational integrator is proposed that is inspired by the fact that only the partial derivatives
of the discrete Lagrangian are needed in the latter equations. The calculation of these derivatives, provides a new integral
that depends on the Euler–Lagrange vector itself, which vanishes in the continuous and exact case.

3. The new approach of local path fitting

The new method based on the variational integrators theory arises from the system of differential equations (9), which
can be considered as a numerical one-step procedure (qk, pk) → (qk+1, pk+1). In general, the level of the accuracy in the
estimation of the action integral

Ld(qk, qk+1, h) ∼

 tk+1

tk
L(q, q̇, t)dt (10)

characterizes the accuracy of the resulting method [16].
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From Eqs. (9), one can imply that only the derivatives of the discrete Lagrangian Ld are needed to be calculated. For
obtaining these derivatives, we consider a free parameter λ which, in general, may enter q, q̇ and h. Then, obviously, we
have

∂Ld(qk, qk+1, h)
∂λ

= L(q(tk+1), q̇(tk+1), h)
∂h
∂λ

+

 tk+1

tk

∂L(q, q̇, t)
∂λ

dt. (11)

By using the rules of differentiation

∂L(q, q̇, t)
∂λ

=
∂L(q, q̇, t)

∂q
∂q
∂λ

+
∂L(q, q̇, t)

∂ q̇
∂ q̇
∂λ

(12)

and changing the order of derivation in the second term of the right hand side (r.h.s.) of the above equation we get

∂L(q, q̇, t)
∂λ

=
∂L(q, q̇, t)

∂q
∂q
∂λ

+
∂L(q, q̇, t)

∂ q̇
d ∂q

∂λ

dt
. (13)

Inserting the latter equation in Eq. (11) and integrating by parts gives

∂Ld(qk, qk+1, h)
∂λ

= L(q(tk+1), q̇(tk+1), h)
∂h
∂λ

+

 tk+1

tk


∂L(q, q̇, t)

∂q
−

d
dt


∂L(q, q̇, t)

∂ q̇


∂q
∂λ

dt + h
∂L(q, q̇, t)

∂ q̇
∂q
∂λ

tk+1

tk

. (14)

It is now clear that instead of estimating the integral in Eq. (10) using any quadrature rule based on a set of S + 1 grid points
at times {tk + c jh, j = 0, 1, . . . , S}, with c0 = 0 and cS = 1, we only have to estimate the integral

I0 =

 tk+1

tk


∂L(q, q̇, t)

∂q
−

d
dt


∂L(q, q̇, t)

∂ q̇


∂q
∂λ

dt. (15)

On the other hand, if we demand fulfillment of the Euler–Lagrange equation,

∂L(q, q̇, t)
∂q

−
d
dt


∂L(q, q̇, t)

∂ q̇


= 0, (16)

at these grid points, we get I0 = 0 and subsequently

∂Ld(qk, qk+1, h)
∂λ

= L(q(tk+1), q̇(tk+1), h)
∂h
∂λ

+ h
∂L(q, q̇, t)

∂ q̇
∂q
∂λ

tk+1

tk

. (17)

The set of Eqs. (9) are then written as

pk = −
∂Ld(qk, qk+1, t)

∂ q̇
∂q
∂qk

pk+1 =
∂L(qk, qk+1, t)

∂ q̇
∂q

∂qk+1
. (18)

The above set of equations is consistent with the variational principles.
If we consider the S + 1 grid points, qj, j = 0, 1, . . . , S, at times t j = tk + c jh, with c0 = 0 and cS = 1 at the edge points

qk, qk+1, for these internal points we have

∂L(q, q̇, t)
∂ q̇

∂q
∂qj

tk+1

tk

= 0, j = 1, 2, . . . , S − 1. (19)

Also for the internal points qj of the segment with endpoints qk and qk+1, we have

∂Ld
∂qj

= 0 (20)

as the curve is fixed at its endpoints. Eqs. (18)–(20) summarize the main formalism of the new local path fitting method
which we test in the following mechanical systems.
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3.1. Solving the harmonic oscillator using local path fitting

For a first test, the proposedmethod is applied to thewell knownproblemof the harmonic oscillatorwith unity frequency
that is described by the Lagrangian

L =
1
2
q̇2 −

1
2
q2. (21)

To obtain the oscillationswe can calculate q(t)with t in the interval t ∈ [0, h]with h = tk+1−tk, by the following expression

q(t) =


1 −

t
h


qk +


t
h


1 −

t
h


x1 +


t
h

2 
1 −

t
h


x2 +


t
h


qk+1 (22)

where x1, x2 are free parameters (coefficients) to be calculated which play the same role as the parameter λ in the previous
formalism.

The approximation of Eq. (22) has been defined in such a way that at t = tk = 0 and t = tk+1 = h to give the endpoints
qk and qk+1, respectively. By demanding that the Euler–Lagrange equations hold at the endpoints, any quadrature rule for
the calculation of the action integral, based on the edge points of the curve, will give the set of Eq. (18).

In order to generalize Eq. (22), we define

τ =
t − tk

h
, τ ∈ [0, 1]

t = tk + τh, t ∈ [tk, tk+1];

then Eq. (22) is written as

q(t) = (1 − τ)qk + τ(1 − τ)x1 + τ 2(1 − τ)x2 + τqk+1. (23)

Calculating the derivations of the above equation we obtain

q̇(t) =
dq
dτ

dτ
dt

= −
1
h
qk +

1
h
(1 − 2τ)x1 +

1
h
(2τ − 3τ 2)x2 +

1
h
qk+1

q̈(t) = −
2
h2

x1 +
1
h2

(2 − 6τ)x2.

The parameters x1, x2 of Eqs. (22)–(23) can now be easily calculated by demanding that the discrete Euler–Lagrange
equations hold. So we obtain

x1 =
h2

3


qk +

qk+1

2


x2 =

h2

6
(qk+1 − qk).

The proposed method then gives

qk+1 =
6hq̇k + qk(6 − 2h2)

6 + h2

q̇k+1 =
qk+1 − qk

h
−

h
3


qk +

qk+1

2


.

Fig. 1 shows the exact orbit q(t) and the positions qk calculated by using the local path fitted method for the case where
q(t) is described from Eq. (22). It is clearly shown that the two orbits are identical. The results have been taken for the first
10 periods using a time step h = 0.01 with unity frequency (ω = 1).

4. Local path fitting using Bernstein basis polynomials

For a better approximation of the discrete trajectory q(t) described above, we introduce the Bernstein basis polynomials
which have been defined in Ref. [25] and have the advantage to approximate a continuous function [25–28]. Here we will
employ them to write Eq. (22) in a more compact and convenient form.

The n + 1 Bernstein basis polynomials of degree n are defined as

bj,n(τ ) =


n
j


τ j(1 − τ)n−j, j = 0, 1, . . . , n (24)

(τ ∈ [0, 1]) where

n
j


is the known binomial coefficient (see Appendix). The basic properties of these polynomials, which

are required for the purposes of the present work, are summarized in Appendix.
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Fig. 1. The exact orbit (solid line) for the harmonic oscillator with unity frequency (ω = 1) and the calculated (using the local path fitted method)
points (◦) for the first 10 periods. An orbit satisfying the Euler–Lagrange equation at the edge points has been employed.

We then consider the Lagrangian L(q, q̇, t) of a given system and the state vector (qk, pk) at a given time tk. By assuming
xj, j = 0, 1, . . . , S to be a set of S + 1 parameters defined on the grid points, we define q(t) through the polynomial form

q(t) =

S
j=0

xjbj,S(τ ), t ∈ [tk, tk+1] (25)

with

τ =
t − tk

h
, 0 ≤ τ ≤ 1 (26)

(h = tk+1 − tk). Eq. (25) represents the analog of Eq. (23) in Bernstein basis polynomial and gives the position q at a time
t ∈ [tk, tk+1] (here we do not put tk = 0, tk+1 = h as in the previous example). This equation expresses the fact that xj are
the so called Bernstein coefficients (Bézier coefficients).

Since q(tk) = x0 and q(tk+1) = xS , from Eq. (25) we have

q(t) = qkb0,S(τ ) +

S−1
j=1

xjbj,S(τ ) + qk+1bS,S(τ ). (27)

Replacing the position q(t) and velocity q̇(t) in the Lagrangian and demanding satisfaction of the Euler–Lagrange equation
(9) in the grid points, we get

pk = −
∂L
∂ q̇


t=tk

∂L
∂q


t=tk+cjh

−
d
dt


∂L
∂ q̇


t=tk+cjh

= 0, j = 1, 2, . . . , S − 1

pk+1 =
∂L
∂ q̇


t=tk+1

. (28)

By solving the above system for xj, j = 0, 1, 2, . . . , S − 1 and pk+1, the next points qk+1 = xS can be calculated during a
typical one step procedure.

5. Numerical tests

As some concrete applications of the above method we explore its efficiency and the integration steps needed to obtain
small energy error in the two body problem and the five outer planets relative to the Sun in our solar system [29].

5.1. The 2-body problem

We first study the problem of two objects mutually interacted through a central force. The most famous example of
this type is the Kepler’s problem (also called the two body problem) that describes the motion of two bodies which attract



2638 O.T. Kosmas, D.S. Vlachos / Journal of Computational and Applied Mathematics 236 (2012) 2632–2642

Fig. 2. The relative error in energy during one period for eccentricity ϵ = 0.5, step size h = 0.05 and for different values of S (number of intermediate
points). (�) for S = 3, (�) for S = 5, (×) for S = 7, (�) for S = 9 and (◦) S = 11.

Table 1
Number of integration steps.

S 3 4 5 6 7 8 9 10 11 12

No of steps > 104 > 104 3526 460 421 181 142 112 98 59

Table 2
Comparison of the number of integration steps needed for one period in the two body problem to obtain energy error 10−6 with eccentricity e = 0.95, in
various methods (see text).

Order Linear [9] Local path EMB5 [30]

5 3245 790 1182
6 2453 580

each other with a central force (its direction is in the line connecting their centers). In the solar system the gravitational
interaction between two bodies leads to the elliptic orbits of planets and the hyperbolic orbits of comets.

By choosing one of the bodies (the heavier) as the center of our coordinate system, the motion will remain planner.
Denoting the position of the second body by q = (q1, q2)T , the Lagrangian of the system (assuming the masses of the bodies
and the gravitational constant equal to 1) takes the form

L(q, q̇, t) =
1
2
q̇T q̇ +

1
|q|

. (29)

As initial conditions (position and velocity) we assume

q = (1 − ϵ, 0)T , q̇ =


0,


1 + ϵ

1 − ϵ

T

(30)

where ϵ is the eccentricity of the orbit.
In the first computational experiment, we take the eccentricity ϵ = 0.5 and the time step h = 0.05 and plot the relative

error in the energy during one period for several numbers of intermediate points S. The results are shown in Fig. 2 from
which it is clear that the order of the approximation is increased with increasing the number of intermediate points.

In the second simulation experiment, we take the eccentricity ϵ = 0.99 and use an adaptive time step control in order
to keep the relative error in energy smaller than 10−7. Table 1 shows the number of integration steps needed for one period
in several cases of intermediate points. As can be seen, the order of approximation is clearly increased with increasing S as,
the mean time step needed for the same error in energy increases from 1.8 · 10−3 for S = 5–0.1 for S = 12.

In Table 2, the linearmethod (second column) corresponds to the variational integrator described in Ref. [9]. In the fourth
column (labeled ‘EMB5’), the results have been obtainedwith the embedded 5th order exponential fittedmethod of Ref. [30].
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Fig. 3. Long term integration of the 2-body problem with eccentricity ϵ = 0.99 for 103 periods with S = 12 intermediate points and a time step which
is adaptively calculated in order to keep the relative error in energy less than 10−7 . In the first (top) plot, the calculated (+) and the exact (◦) positions of
the orbiting body are plotted for the last period. In the second (bottom) plot, the relative error in the angular momentum is plotted.

By comparing the local path fitted method with the linear one [9], we conclude that in the proposed technique the time
step needed to achieve the same error in energy is larger. As a result, the number of integration steps needed for one period, is
4 times less for the fifth order and 5 times less for the case of sixth order compared to the linearmethod. This is a remarkable
result illustrating the better behavior of the local path fitted technique. The number of steps of our method in the case of
the 5th order appears to be much smaller to those required by the EMB5 method [30].

In Fig. 4, the efficiency of the proposed method is illustrated by plotting the counting calculation time (CPU time) versus
energy error and comparing it with that of the phase-fitted discrete Lagrangian method presented in [23]. As expected,
the smaller the error the larger the CPU time is shown in both methods. It is clear, however, that the present method is
appreciably more accurate than the phase fitted method especially for smaller errors, e.g. for energy error 10−5 the CPU
time of the local path method is about four times smaller, namely more efficient of that in [23].

Finally, in the last experiment we integrate the two-body problemwith eccentricity ϵ = 0.99 for 104 periods in order to
check the long term behavior of the method. The number of intermediate points is S = 12 and the time step is adaptively
controlled in order to keep the relative error in energy less than 10−7. The results for the position qk of the body’s orbit
(calculated with the proposed method and exact ones) and the relative error in angular momentum, are demonstrated in
Fig. 3. In the upper sub-figure, we plot the positions (of the lighter body) during the last period of the motion along with the
exact solution, while in the bottom sub-figure, the relative error in angular momentum is illustrated.

In both cases, the results demonstrate the excellent behavior of the method, even for orbits with extremely high
eccentricity and for very large number of periods. As can be seen, when S = 12 intermediate points are chosen and use
of an adaptive time step is made, the number of steps needed to obtain the orbital motion (although from Table 1 it looks
as a rather small number) are enough to preserve the symplectic structure of the method. Even more, the relative angular
momentum error is less than 10−9 and the same behavior is kept even after a very high number of periods. This can be
considered as a good advantage of our method.

5.2. The 5-outer planets system

The next problemwe have chosen for numerical computationwith our newmethod concerns with themotion of the five
outer planets relative to the Sun. The problem falls in the category of the N-Body problem related to the motion of N bodies
under Newton’s law of gravity. The Lagrangian of this system reads

L(q, q̇, t) =
1
2

N
i=0

mi q̇iT q̇i + G
N
j=1

j−1
k=0

mj
· mk

∥qj − qk∥
(31)

where G is the gravitational constant,mi, qi and q̇i are the mass, the position vector and the velocity vector, respectively, of
the i-th body.
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Fig. 4. The CPU time (in arbitrary units) needed for the proposed method (continuous line) and the Phase fitted discrete Lagrangian method (dashed line)
of Ref. [23]. Both methods are of 5th order and are applied in the two body problem for eccentricity e = 0.6 for one period.

Table 3
Initial data for the 5-outer planet problem in our solar system.

Planet Mass Initial position Initial velocity

Sun 1.00000597682 0 0
0 0
0 0

Jupiter 0.000954786104043 −3.5023653 0.00565429
−3.8169847 −0.00412490
−1.5507963 −0.00190589

Saturn 0.000285583733151 9.0755314 0.00168318
−3.0458353 0.00483525
−1.6483708 0.00192462

Uranus 0.0000437273164546 8.3101420 0.00354178
−16.2901086 0.00137102
−7.2521278 0.00055029

Neptune 0.0000517759138449 11.4707666 0.00288930
−25.7294829 0.00114527
−10.8169456 0.00039677

Pluto 1/(1.3 · 108) −15.5387357 0.00276725
−25.2225594 −0.00170702
−3.1902382 −0.00136504

In Ref. [24], the data for the five outer planets problem is given. The necessary data for the purposes of the present work
are summarized in Table 3. Masses are relative to the Sun, so that the Sun has mass 1. In the computational calculations,
the Sun with the four inner planets are considered as one body, so its mass is larger than one. Distances are in astronomical
units, time is in Earth days and the gravitational constant is G = 2.95912208286 · 10−4.

The Lagrangian of Eq. (31) has been integrated for t ∈ [0, 106
] days, with a time step h = 50 days and using S = 6

intermediate points. The results are shown in Fig. 5. The planet orbits are obtained stable, the maximum relative error in
energy is ∼10−7, the maximum relative error in momentum is less than 10−10 and finally the relative error in angular
momentum is ∼10−9.

We note that, the errors in angular momentum are mostly due to the round off error produced by the solution of the
non-linear system used to calculate the intermediate points.

From Fig. 5, it becomes obvious that the main advantages of the proposed integrator arise from the symplectic behavior
of the method. The local path fitted method, when used for multi body problems, as the outer planets problem, and for
high number of periods (in our case 106 days), preserve the symplectic structure of the problem, described from system’s
angular momentum. Even more, the Bernstein basis polynomials (used for the interpolation of the intermediate points)
when combined with the perspective to keep the relative energy error rather small (a quantity which can be changed by
the user), force the bodies to keep their orbits. At the end, the calculated relative error in momentum from the proposed
algorithm is less than 10−11. This is also a remarkable result since, even after an extremely high number of periods (hundred
thousand of days) the error in momentum is less than 10−13.
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Fig. 5. Integration of the outer solar system for 106 days with time step h = 50 days and S = 6 intermediate points. The planets (Jupiter, Saturn, Uranus,
Neptune and Pluto) follow constant orbits, while the relative error in energy is ∼10−7 , the maximum relative error in momentum is less than 10−10 and,
finally, the relative error in angular momentum is ∼10−9 .

Before closing we note that, in generally, the accuracy is not the primary advantage of the application of variational
integrators, but rather their ability to discretely preserve essential structure of a continuous system and to compute
statistical properties of larger groups of orbits, such as Poincaré sections or temperature of a system (see, for example,
Refs. [16,31]).

On the other hand, high accuracy can be obtained using specially designed methods as it is explained in Refs. [23,32].
Even though these methods produce high order estimations of the positions and the momenta, computationally become
very heavy as the order increases. This is due to the large number of parameters that have to be calculated in each step
(depending on the nature of the Lagrangian) as a solution to a non-linear system. The entire set of equations, consists of
partial derivatives of the action integral and a set of variational equations that determine the internal points, needed for
high order methods (see also Ref. [29]).

6. Summary and conclusions

In the present work, a new approach for constructing variational integrators has been developed. This new technique is
based on the fact that, the construction of the symplectic map in the variational integrator, needs only the estimation of the
partial derivatives of the action integral in a time interval. These derivatives in the proposed method are functions of the
integral of the Euler–Lagrange vector, which in the exact case vanishes.

Thus, taking an orbit which satisfies the Euler–Lagrange equation in a number of grid points, any quadrature used for the
calculation of the action integral vanishes and the process is significantly simplified.

Experimental tests show that thismethod efficiently integrates stiff systems (like the two body problemwith eccentricity
up to 0.99) conserving all the benefits of the classical variational integrators.
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Appendix. Bernstein basis polynomials

The Bernstein basis polynomials are defined as

bj,n(τ ) =


n
j


τ j(1 − τ)n−j, j = 0, 1, . . . , n (A.1)
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and described the Bernstein polynomial

B(τ ) =

n
j=0

xjbj,n(τ ) (A.2)

where

n
j


is the known binomial coefficient defined as

n
j


=

n!
j!(n − j)!

. (A.3)

The main properties of the Bernstein basis polynomials are summarized in the equations below

bj,n(0) = δj0

bj,n(1) = δjn

with δ being the Kronecker delta symbol.
If n ≠ 0, then bj,n(τ ) has a unique local maximum on the interval [0, 1] at τ =

j
n . This maximum takes the value

jjn−n(n − j)n−j

n
j


. (A.4)

For other properties see Refs. [25–28].
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