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Abstract. On the basis of the variational integrators theory, we initially examine the
possibility of deriving multi-step numerical methods. Then, we propose an integration technique
that approximates the action integral within one time interval by using appropriate expressions
for the relevant configurations and velocities. These approximations depend on a specific number
of known configurations defined at previous time nodes. Multi-step numerical methods can
finally be deduced, by defining, as usually, the Lagrange function as a weighted sum over the
discrete Lagrangians corresponding to each of the curve segments and using the discrete Euler-
Lagrange equations.

1. Introduction and motivation
Numerical integration of ordinary differential equations with oscillatory solutions has been the
subject of intensive research in the past few decades. Special cases of such ordinary differential
equations are often met in real problems, such as the N-body problem. For highly oscillatory
problems, standard nonspecialized methods may require a huge number of steps to track the
oscillations. One of the possible ways to obtain a more efficient integration process, is to
construct numerical methods with an increased algebraic order, even though the implementation
of high algebraic order meets several difficulties [1].

On the other hand, variational integrators are relatively new tools to model dynamical
systems. In particular, they constitute an alternative to continuous ordinary differential
equations to simulate mechanical systems. They can be considered as a class of integrators
[1, 2] that preserve (or nearly preserve, depending on the particular integrator) fundamental
physical observables like energy and momentum [3, 4, 5]. They have traditionally been used
to study conservative systems (e.g., celestial mechanics), but modern variational integrators
also include forcing and dissipation. In fact, the results with external forcing often have better
accuracy than those of classical methods.

In the present contribution, a new way to derive multi-step numerical methods is investigated.
Based on the variational integration schemes, the proposed technique approximates the action
integral within one time interval by using expressions for configurations and velocities that
depend on a specific number of known configurations at previous time nodes. By defining the
Lagrange function as a weighted sum over the discrete Lagrangians corresponding to the each
of the curve segments and using the discrete Euler-Lagrange equations, multi-step numerical
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methods can be defined. The application of these methods may be tested in several numerical
problems.

2. Discrete mechanics and variational integrators
When discretizing a mechanical system, whose continuous Lagrangian is defined as L : TQ→ R,
on the time interval [0, T ], a finite number of time nodes 0 = t0 < ... < tN = T derives the
sequence of configurations q0, ..., qN , where qk ≈ q(tk) for N ∈ N. The discrete Lagrange function
Ld : Q × Q → R can be defined by the approximation of the action integral along the curve
segment between qk and qk+1, i.e. Ld(qk, qk+1) ≈

∫ tk+1

tk
L(q, q̇)dt. The discrete action sum

corresponding to the above discrete Lagrangians then reads

Sd(q0, ..., qN ) =
N−1∑
k=0

Ld(qk, qk+1) ≈
∫ T

0
L(q, q̇)dt (1)

Applying Hamilton’s actions principle, δSd(q0, ..., qN ) = 0, by requiring the endpoints to be
fixed, i.e. δq0 = δqN = 0, discrete Euler-Lagrange equations are obtained as

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0, k = 1, ..., N − 1 (2)

where D1Ld and D2Ld denote the partial derivatives of Ld with respect to the first and second
arguments, see e.g. [4].

3. Deriving multi-step methods from discrete Lagrangian integrators
Following the steps of [4, 5, 6] to derive multi-step numerical schemes using variational
integrators, we use intermediate configuration qj ∈ [qk, qk+1] at time tj ∈ [tk, tk+1] for j = 0, ..., S
(S ∈ N) by expressing tj = tk + Cjh for Cj ∈ [0, 1] such that C0 = 0, CS = 1 for h = tk+1 − tk.
Under these assumptions the general expression for qj can then be written as

qj = fk−σ(tj)qk−σ + ...+ fk+1+σ(tj)qk+1+σ, σ ∈ N (3)

where 2σ+ 2 represents the number of configuration points needed for the above approximation
and

fk−σ(tj) = 0, for j = 0, j = S and σ 6= 0

fk(tk) = fk+1(tk+1) = 1, fk(tk+1) = fk+1(tk) = 1 (4)

The velocity obtained for the above expression of the intermediate point can be written as

q̇j = ḟk−σ(tj)qk−σ + ...+ ḟk+1+σ(tj)qk+1+σ, σ ∈ N (5)

(ḟ denotes, as usually, time derivative). It is worth notting that the phase-fitted discrete
Lagrangian integrators of Ref. [6] are a special case of the above expressions for σ = 0 and

fk(t
j) =

sin
(
u− tj−tk

h u
)

sinu
, fk+1(t

j) =
sin
(
tj−tk
h u

)
sinu

(6)

(u ∈ R− {kπ, k ∈ Z}). It is now clear that the latter functions satisfy the assumptions of Eqs.
4. For these functions the expressions for intermediate points are

qj =
sin
(
u− tj−tk

h u
)

sinu
qk +

sin
(
tj−tk
h u

)
sinu

qk+1

q̇j =
1

h

[
−
u cos

(
u− tj−tk

h u
)

sinu
qk −

u cos
(
tj−tk
h u

)
sinu

qk+1

]
(7)
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4. Numerical schemes derived using Catmull-Rom splines
Following the above assumptions, we employ the cubic Hermitian spline interpolation on a single
unit interval to obtain points qj ∈ [qk, qk+1] from a linear combination of the form [7]

qj = a1qk + a2pk + a3qk+1 + a4pk+1 (8)

where

a1 = 2(cj)3 − 3(cj)2 + 1, a2 = (cj)3 − 2(cj)2 + cj ,

a3 = −2(cj)3 + 3(cj)2, a4 = (cj)3 − (cj)2. (9)

If we chose the tangents to be given by pk = (qk+1 − qk−1)(2h)−1, a Catmull-Rom spline
interpolation of the interval can be obtained as [7]

qj = fk−1qk−1 + fkqk + fk+1qk+1 + fk+2qk+2 (10)

where

fk−1 = − a2
2h
, fk = a1 −

a4
2h
,

fk+1 =
a2
2h

+ a3, fk+2 =
a4
2h
. (11)

Using the latter expression for qj the discrete Lagrangian is of the same form, i.e. it depends
only on the endpoints [qk, qk+1]. From Eq. (10) the expression for q̇j can be functional cast in
the form

q̇j = ḟk−1qk−1 + ḟkqk + ḟk+1qk+1 + ḟk+2qk+2 (12)

where

ḟk−1 =
−3(cj)2 + 4cj − 1

2h2
, ḟk =

12(cj)2h− 12cjh− 3(cj)2 − 2(cj)

2h2
,

ḟk+1 =
3(cj)2 − 4cj − 12(cj)2h+ 12cjh+ 1

2h2
, ḟk+2 =

3(cj)2 − 2cj

2h2
. (13)

By combining Eqs. (10) and (12), with Eqs. (9) and (9) the discrete Lagrangian reads

Ld(qk−1, qk, qk+1, qk+2) ≈ h
S∑
j=1

WjL(q(tk + cjh), q̇(tk + cjh)). (14)

Using the Hamilton’s principle we can now compute the variations of the action sum S providing
that the boundary points q0,q1,q2 and qN−2,qN−1,qN are kept fixed. Furthermore, by demanding
the variations of the action to be zero for any choice of δqk with δq0 = δq1 = δq2 = δqN =
δqN+1 = δqN+2 = 0, we obtain

D1Ld(qk, qk+1, qk+2, qk+3, h) + D2Ld(qk−1, qk, qk+1, qk+2, h) +

D3Ld(qk−2, qk−1, qk, qk+1, h) + D4Ld(qk−3, qk−2, qk−1, qk, h) = 0 (15)

The latter equations are the discrete Euller-Lagrange equations stemming from the discrete
Lagrangian Eq. (14) and must hold for each value of k.

We can now use the expressions (10) and (12) to derive the discrete Lagrangian of Eq. (14)
for some specific physical problems. For the resulting Lagrangian, the discrete Euller–Lagrange
equations of (15) will be used.
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5. Simple harmonic oscillator
We first consider the simple harmonic oscillator described by the Lagrangian

L =
1

2
q̇2 − 1

2
ωq2 (16)

The interpolation technique of Eqs. (10) defines the discrete Lagrangian

Ld(qk−1, qk, qk+1, qk+2, h) =
h

2

[
S∑
j=0

Wj

(
q̇j
)2 − ω2

S∑
j=0

Wj

(
qj)2

]
(17)

Subsequently the discrete Euler-Lagrange equations (15) give the variational integrator (see
Ref. [4])

P1qk+3 + P2qk+2 + P3qk+1 + P4qk + P3qk−1 + P2qk−2 + P1qk−3 = 0 (18)

where

P1 =
S∑
j=0

Wj

(
ḟk−1ḟk+2 − ω2fk−1fk+1

)
P2 =

S∑
j=0

Wj

[
ḟk−1ḟk+1 + ḟkḟk+1 − ω2(fk−1fk+1 + fkfk+1)

]
P3 =

S∑
j=0

Wj

[
ḟk−1ḟk + ḟkḟk+1 + ḟk+1ḟk+2 − ω2(fk−1fk + fkfk+1 + fk+1fk+2)

]
P4 =

S∑
j=0

Wj

[
ḟ2k−1 + ḟ2k + ḟ2k+1 + ḟ2k+2 − ω2(f2k−1 + f2k + f2k+1 + f2k+2)

]
(19)

For the above integrator since the first six points must be known, any numerical scheme can be
used as starting method.

6. Summary and conclussions
In the present we have investigated the possibility of deriving multi-step numerical schemes by
combining variational integrators theory and spline interpolation techniques. A special case of
the proposed technique, that uses Catmull-Rom spline interpolationhas been derived for the
numerical solution of physical problems with oscillating solution.
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