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a b s t r a c t

In this article we present a simulated annealing based algorithm for the determination of optimal ship

routes through the minimization of a cost function defined as a weighted sum of the time of voyage and

the voyage comfort (safety is taken into account too). This cost function is dependent on the wind speed

and its direction as well as on the wave height and its direction. The constructed algorithm at the

beginning discretizes an initial route and then optimizes it by considering small deviations, which are

accepted or rejected by utilizing the simulated annealing technique. Using calculus of variations, we

prove a key theorem which tremendously accelerates the convergence of the proposed algorithm. For

an illustration of the advantages of the constructed method, both computational and real experiments

have been carried out which are presented and discussed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Optimization of ship routing is closely related to both ship
characteristics and environmental factors. Ship and cargo char-
acteristics have a significant influence on the application of ship
routing [1–3]. Ship size, speed capability and type of cargo are
important considerations in the route selection process prior to
sailing and the surveillance procedure while underway [5]. The
characteristics of a ship identify its vulnerability to adverse
conditions and its ability to avoid them [4,5,7].

As it is known, environmental factors of importance to ship
routing are those elements of the atmosphere and ocean that may
produce a change in the status of a ship transit [1,5]. The role of
routing is to allocate the available resources (e.g. POSEIDON
system, Ref. [6]) so as certain requirements are perfectly fulfilled.
In ship routing studies, as environmental factors are considered
the wind, sea waves, fog and ocean currents. While all the
environmental factors are important for route selection and
surveillance, a route is usually considered optimum if the effects
of wind and waves are optimized [7,8].

The effect of wind speed on the ship performance is difficult to
be determined. In light winds (less than 20 knots) ships lose
speed in headwinds and gain speed slightly in following winds.
For higher winds, ship speed is reduced in both head and
following winds. Wave height is the major factor affecting ship
ll rights reserved.
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performance. In general, the wave action is responsible for ship
motions, which reduce propeller thrust and cause increased drag
from steering corrections. The relationship of ship speed to wave
direction and height is similar to that of wind. Head sea waves
reduce the ship-speed, while following sea-waves increase ship-
speed slightly up to a certain point, beyond which they retard it.
In the case of strong sea waves, exact performance may be
difficult to predict [1,7].

Concerning fog, while this is not directly affecting ship
performance, it should be avoided as much as feasible, in order
to maintain normal speed in safe conditions. Even though the ship
route may become longer in order to avoid fog, transit time may
be less, due to not having to reduce speed as it must be done in
reduced visibility [4,7].

Ocean currents, generally, do not cause significant routing
problems, but they can be a determining factor in route selection
and diversion. The important considerations to be evaluated are
the benefits of the optimal route, without taking into account
ocean currents and a route selected for optimum current with the
expected increase of speed from the following ocean current.
More details about the effect of environmental factors to ship
routing can be found in Refs. [1,5,6].

In this paper we concentrate on the problem of optimal ship
routing taking into account only the wave height and its direction. For
the optimization procedure we construct an appropriate simulated
annealing based algorithm [9,10]. As it is known, a simulated
annealing method is an extension of a Monte Carlo method devel-
oped by Metropolis et al. [11], to determine the equilibrium states of
a collection of atoms at any given temperature T. Soon after the
simulated annealing was first proposed in Ref. [10], intensive research
effort has been devoted on its properties and applications [2,12,13].
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This technique attracted also significant attention as suitable
for optimization problems of large scale. It can give solution when
a desired global extremum is hidden among many, poorer, local
extrema [14,15]. Even though other practical methods have also
been developed for such purposes, surprisingly, the implementa-
tion of the algorithm in simulated annealing methods is relatively
simple. The basic tool of such a method operates in analogy with
thermodynamic processes and specifically with the way liquids
freeze and crystallize, or metals cool and anneal when they are
cooled slowly and thermal mobility is lost. For slowly cooled
systems, nature is able to find the minimum energy state [10,11].

In the present work we exploit this property of physical
systems to find the optimum route of a ship trip performed under
the action of environmental factors and specifically under wind.
In addition, we take advantage of the formulation of the discrete
variational mechanics for the discretization of the initial ship
route as it is described below.

The rest of the article is organized as follows. At first, in
Section 2, the formulation of the problem is shortly outlined and
the main features of the method based on discrete variational
principles are briefly described. In Section 3 a key theorem, which
provides an efficient way of searching for the optimal solution in
ship routing, is proved. In Section 4, the operating steps of the
simulated annealing algorithm constructed in this work are
explained and analyzed. Both simulated and real experimental
tests of the method are performed and the results are presented
and discussed in Section 5. Finally, in Section 6 the main
conclusions extracted in this work are summarized.
2. Brief description of the formalism

Let us assume that an initial route of a ship (see Fig. 1) is
represented by a smooth curve ~rðsÞ where the parameter s is the
arc length measured from some fixed point A (initial point of the
ship route). Then, the tangent vector of the curve of the ship’s
route in the point of question is defined as (see e.g. Ref. [16])

~t ¼
_~r

j _~r j
¼

d~r

ds
ð1Þ

where _~r is the ship’s velocity (see also [22,23]).
We also assume that the moving ship is subjected to the

influence of the wave represented by (height and direction)
the vector ~w and the wind represented by (speed and direction)
the vector ~v.

Under the above circumstances, we define a route cost func-
tion (a scalar quantity) assigned at every possible route between
two points which includes a weighted combination of the voyage
Fig. 1. A route from point A to point B.~r ðsÞ is the parametrization of the route, and

w, v are the wave and wind vectors, respectively.
time and the safety (or comfort) of the voyage. The total route
cost function S reads

S¼ aTþð1�aÞC ð2Þ

where T is the total voyage time and C is a scalar characterizing
the safety (comfort) of the voyage. The weight parameter a can be
tuned by the user depending on the specific demands of the
problem in question. Note that, when a¼ 1, then the only
optimization quantity is the voyage time, while when a¼ 0, the
only function to be optimized is the crew comfort C.

The scalar C is calculated as a line integral over the route in the
following way (up to the linear approximation) [6,7]:

C �

Z B

A
c ds¼

Z B

A
ð~v

T
Zvþ~w

T
ZwÞ �~t ds ð3Þ

where Zv and Zw are tensors which characterize the ship response
to wind (with wind vector ~vÞ and wave (with wave vector ~wÞ,
respectively. The calculation of the total voyage time T, is a bit
more complicated, since both wind and waves can alter the speed
of the ship (see Section 3). In general, for the magnitude of the
ship speed we can write

j
_~rðrÞ j ¼ uþFð~v,~w,~tÞ ð4Þ

where u is the speed of the ship in zero wind and F is a function
that depends on ship characteristics, wind, wave and direction of
the ship movement. For simplicity in the present work, we
assume that F¼0.

2.1. The discrete variational principles

Recently, progress has been made in the development of varia-
tional discretization in mechanical problems, both in the funda-
mental theory and in the applications to challenging problems of
optimization [17–20]. For such purposes, a method of variational
integrators, based on the discretization of Hamilton’s principle has
been developed which underlines essentially the entire mechanics,
from particle mechanics to continuum mechanics [17,18]. Also, the
discretization of Lagrange–D’Alembert principle has been formu-
lated and used, especially in cases where dissipation or external
forces are present [18,19].

Preserving the basic variational structure in constructing an
algorithm, it retains the structure properties of mechanics (such
as conservation laws) at the algorithmic level. This avoids many of
the problems appearing in some existing integrators, such as
spurious dissipation, for which standard techniques may need
very expensive runs in order to eliminate it [18].

With an appropriate development of the connection between
mechanics and geometry through the discretization, one is able to
use the methodology described in Ref. [20] for geometry, Refs.
[17–19].

In the first step of the present work, we construct the comfort
function C which is subsequently treated with minimization
techniques as in basic problems of the calculus of variation. This
problem resembles to that of Hamilton’s principle where a
Lagrangian Lðq, _qÞ is initially defined (for the specific mechanical
system under consideration) to make the action integral station-
ary which leads to the Euler–Lagrange equations.

In the case of a ship routing problem, the role of the action
integral plays the cost function S of Eq. (2) or the comfort function
C of Eq. (3), for which we demand

dC ¼ d
Z B

A
½cðsÞ� ds¼ 0, ð5Þ

for all variations related to the route arc s (A and B are the fixed
end points of the route). One can mimic the procedure and exploit
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the advantages of the discrete variational mechanics in ship
routing problems as demonstrated below.
Fig. 2. The solution can be locked in a local minimum if the optimal route cannot

be generated by continuous transformations of the initial route.
3. Discretization of the initial ship’s route

We start by considering the discrete case, where the ship route
is approximated by a polygonal line with edges ~rk, k¼ 0,1, . . .M
(see Fig. 1). The length of each line segment is

dk ¼ j~rk�~rkþ1j, k¼ 0,1, . . . ,M�1, ð6Þ

and the tangent vector to the route at each edge is

~tk ¼
~rk�~rkþ1

dk
, k¼ 0,1, . . . ,M�1: ð7Þ

Then, the required ingredients for the cost function of Eq. (2)
which corresponds to the route can be obtained by

T ¼
XM�1

k ¼ 0

dk

u
,

C ¼
XM�1

k ¼ 0

~z
T
k �
~tkdk: ð8Þ

In the later equation

~z
T
k ¼~v

T
Zvþ~w

T
Zw ð9Þ

is calculated at the point ~rk and at time

Tk ¼
Xk�1

j ¼ 0

dj

u
: ð10Þ

Afterwards, the cost function of Eq. (2) reads

S¼ a
XM�1

k ¼ 0

dk

u
þð1�aÞ

XM�1

k ¼ 0

~z
T
k �
~tkdk: ð11Þ

Consider now a small change in~rk of the form e~xf, where e is a
small positive number and ~xf is the unit vector in the direction
which forms an angle f with the horizontal axis. The new route
will have cost S0 for which we have

DS¼ S0�S

¼ aeð~zT
k�~z

T
k�1Þ �~xfþð1�aÞ

e
u
ð~t

T

k�
~t

T

k�1Þ �~xf

or

DS¼ e að~z
T
k�~z

T
k�1Þþð1�aÞ

1

u
ð~t

T

k�
~t

T

k�1Þ

� �
�~xf ð12Þ

To obtain the later equation we have assumed that

j~rþ~lj � j~r jþ
~r �~l
j~r j

, j~lj5 j~r j: ð13Þ

In our simulated annealing method the expression of DS of
Eq. (12) enters the Maxwell Boltzmann probability distribution
in order to define optimized routes, as it is described below and in
Section 4.

3.1. Searching using simulated annealing

We consider that the initial route illustrated in Fig. 1 is divided
into several line segments, the number of which depends on the
wind and wave forecasts. In this way, any ship route is repre-
sented by a set of way-points. The total cost of the initial route is
readily calculated. Then, at any iteration step, every way-point
of the route is moved by an elementary length perpendicular
to the line which connects the departure and the arrival points
(end points of the segment). This elementary length is specified
by the resolution of the wind and the wave forecasts.

Every displacement has a positive or negative contribution to
the total cost and it is accepted even if it has a positive
contribution to the total cost with a probability, however, which
depends on the temperature-parameter of the algorithm which
pays the same role as the temperature of a physical system.

In simulated annealing methods the probability distribution is
described by the so-called Boltzmann probability distribution,

pðEÞ � ProbðEÞ � expð�E=kTÞ: ð14Þ

(the quantity k, Boltzmann’s constant, is a constant of nature that
relates temperature to energy). The physical meaning of the latter
equation is that a system in thermal equilibrium at temperature T

has its energy states probabilistically distributed according to
their energy E. Even at low temperature, there is a chance, albeit
very small, for a physical system to occupy a high energy state.
Correspondingly, there is a chance for the system to get out of a
local energy minimum in favor of finding a better, more global
energy minimum. In other words, the system sometimes goes
uphill as well as downhill, but the lower the temperature, the less
likelihood for any significant uphill transition.

Initially, the temperature-parameter of the algorithm is high,
but as the algorithm proceeds, the temperature is decreased to
zero. At this point, only movements with negative contributions
are accepted. This method, known as simulated annealing, is used
to prevent the algorithm from being trapped in local minima
through the above mechanism it proceeds further to find the
global minimum (or minima).

Notice here that, there is no systematic way to decide if the
calculated route is the optimal one. In most cases, however, the
voyage time is very critical and, thus, the optimal route is close to
the shortest initial one. The only such case, in which we observed
in our experiments (the iterative procedure was locked in a local
minimum), appeared in the case when the line between the
departure and arrival points was very close to a small obstacle
(see Fig. 2). In the majority of such instances, the method could
not bypass the obstacle and the algorithm terminates. The reason
is that only continuous transformations of the route are permitted
and performed at any step of the algorithm. To overcome such
difficulties, we consider several initial routes, as it will be
explained in the next section.
3.2. Acceleration of the convergence in the searching mechanism

In order to accelerate the convergence of the searching
mechanism, it would be useful to know in advance, to which
directions the cost function is more sensitive to the transforma-
tions of the initial route. Fortunately, one can prove that, in
minimizing the cost function for any segment of the ship’s route,
the resulting movement is parallel or anti-parallel to the direction
of the wave propagation.
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The proof, by considering only the contribution of the wave
field in the cost function of Eq. (8), proceeds as follows.

Under the above conditions, the cost function of Eq. (8) is given by

C ¼

Z B

A
ð~w

T
ZwÞ �~t ds ð15Þ

and we assume a change of the route close to the point ~rðs0Þ which
results in a new tangent vector of the form

~t
0
¼~tþedðs�s0Þ~xf ð16Þ

(d is the Dirac function or d-function) where e, ~xf have been defined
in Section 3.1. The variation in the cost function which corresponds
to

d~t ¼ edðs�s0Þ~xf ð17Þ

is written as

dC ¼

Z B

A
ð~w

T
ZwÞedðs�s0Þ �~xf ds ð18Þ

or

dC ¼ e~z js ¼ s0
�~xf ð19Þ

where ~z js ¼ s0
¼ f~w

T
Zwgjs ¼ s0

, i.e. the vector ~w
T
Zw calculated at the

point of the route where s¼ s0.
It is obvious from Eq. (19) that the maximum change of the

cost function will occur if the angle between the vector~z js ¼ s0
and

~xf is 0 or p. Hence, the acceleration of the convergence is
achieved by selecting variations of the initial route only in the
above directions. In our experiments, the direction of the vector
~z js ¼ s0

is always the same with the direction of the wave
propagation, thus, the accepted variations of the initial route are
those which are parallel or anti-parallel to the direction of the
wave field.
4. Description of the new algorithm

4.1. Selection of the initial route and its representation with way-

points

Before starting the optimization procedure with the algorithm,
we have to provide one (or several) initial route. In the case when
there are no obstacles between the starting and ending points, the
initial route is simply the line joining these two points. Further-
more, if there is one obstacle between the starting and ending
points, then there are two possible initial routes, each of which
bypasses the obstacle from a different side. It is a good practice to
start with shortest initial routes (one route for every possible
bypass), thus having already optimized the voyage time.
Obviously, in this case, if a point B belongs to the shortest path
between points A and C, then the shortest path between points B

and C is part of the shortest path between points A and C [24,23].
It is proved in Ref. [7] that the shortest path bypassing an

obstacle is tangent to the convex hull of the obstacle. Thus, the
problem of calculating the shortest path is reduced to the
calculation of the shortest path from the contact point of this
tangent to the ending point.

If there is more than one obstacle, recursively, we get that the
number of initial paths is 2n, where n is the number of obstacles
between the starting and ending points. The algorithm must
check all the initial routes to decide for the optimal solution even
if for these checks the computational time has to be significantly
increased.

As soon as the initial route is calculated, one has to decide for
the number of way-points which will be used to represent the
route. From a first view, one can think that this number plays the
same role with that of the degree of a polynomial employed to fit
a given smooth curve. In the latter case, increasing the degree of
the polynomial, results to a better fitting, but this is not exactly
the case here for the following reasons.
(1)
 The first reason is that, increasing the number of way-points,
the computational time is increased (in a real ship trip the
actions that have to be taken by the ship’s crew are
increased too).
(2)
 The second reason concerns with the period Td of the forecast
data. If u is the speed of the ship, then nothing is known about
the drift of the environmental data in the time interval Td and,
thus, in the space interval Ld ¼ uTd.
(3)
 The last reason is related to the details of the model used to
forecast the environmental data, and more precisely the mesh
that is used. If Ld is the distance of the mesh points, then the
ship for the time interval Ld=u is moved in constant environ-
mental parameters.
Experiments performed with various numbers of way-points
have shown that an optimal selection for the distance of the way-
points should be close to Ld. It is, then, a good practice to
continuously adjust the number of way-points. If the distance
between two successive way-points is greater than a chosen DM,
another way-point is added between them. On the other hand, if
two successive way-points are closer than a special distance Dm, the
two way-points are merged in one. In the experiments carried out
and presented in this paper (see Section 5 below) we have chosen

DM ¼ 2 � Ld, Dm ¼ Ld=2 ð20Þ

4.2. Stages of the algorithm

The calculation of the optimal route is afterwards performed
through the following steps:
1.
 Consider the set f~rk,k¼ 0,ð1Þ,Mg of Mþ1 points representing
the initial route.
2.
 Choose a random integer k between 1 and M�1, i.e. including
all points of the set except the end points corresponding to
k¼0 and k¼M. Generate a random real f such that 0rfr2p.
3.
 Calculate the difference of the cost function, i.e. Eq. (12),
between the initial route and the route resulting by shifting
~rk by e~xf, where e is a small real number and~xf is a unit vector
in the generated random direction.
4.
 Generate a random number p between 0 and 1 and accept the
variation of the route if poe�DS=T , where T stands for the
temperature-parameter. If the variation is not accepted, goto
step 6.
5.
 Check ~rk with the adjacent points, which means that, if two
points are very close, merge them or, if they are too far, add a
new point between them according to Eq. (20).
6.
 Decrease progressively the temperature-parameter T of the
simulated system in analogy with the cooling of the physical
system (simulated annealing). Check if the algorithm has to
terminate, otherwise goto step 2.

The symbols used above have been explained previously, for
further details the reader is referred to Ref. [21–23].
5. Numerical results

In this section, we apply the new algorithm, first, to carry out
two computational experiments, one in which we look for the



Fig. 3. Optimal route calculated as follows: (a) in a wave field with constant

magnitude and direction, (b) in a wave field with constant magnitude but with

direction which is inverted once during the voyage, and (c) same as in (b) but the

direction is inverted twice.

Fig. 4. The role of the weight parameter a in the cost function S. If a¼ 1, the

calculated route is simply the line joining the starting and ending points. By

decreasing the value of a, the contribution of the voyage time into the total cost is

decreased and the calculated route becomes a curved path.

Fig. 5. Initial routes calculated from the port of Thessaloniki to the port of A.

Nikolaos. The dominant wave fields are shown across the routes with an arrow

showing the direction and magnitude of the wave field.
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optimal route under constant (or piecewise constant) wave field,
and another (simulated) experiment in which the weight para-
meter a is varied. In the second stage of our applications, by using
our method, we search for the optimal route in a real trip of a ship
from Thessaloniki to Agios Nikolaos which is performed under
piecewise constant wave field (for more details see [25]).

5.1. Simulated experiment under constant wave field

In the first simulated experiment, the optimal route under the
action of a uniform wave field, see Fig. 3(a), is calculated.

In this case, see Fig. 3(a), the direction of the uniform wave
field, ~w, was assumed upwards and it does not change during the
voyage. Notice that the way-points are moved upwards in order
to maximize the product j~u � ~wj, where ~u is the velocity of the ship
(in the real ship trip this is very reasonable, since the higher
moments around the ship’s axis are developed when the wave is
perpendicular to the ship’s direction).

In the second simulated experiment the optimal route for a
piecewise uniform wave field, cases of Figs. 3(b) and (c), is
calculated. We have assumed that the wave field is inverting
direction once and twice, respectively. The observed behavior,
demonstrated in Figs. 3(b) and (c), for each part of the route is
similar to that of Fig. 3(a).

5.2. The effect of the weight parameter a

In this computational experiment we studied the effect of the
weight parameter a, which enters the definition of the cost
function S of Eqs. (2) and (11). The wave field is assumed constant
with direction perpendicular to the line joining the starting (S)
and ending (E) points of the voyage, as indicated in Fig. 4.

When the parameter a takes its largest value ða¼ 1Þ, the
algorithm is not taking into account the comfort of the voyage.
Since voyage time is the only parameter to optimize, the calcu-
lated value is simply the line joining the starting and ending
points.

By decreasing the value of the parameter a, the comfort of the
voyage starts to act cumulatively to the total cost function, thus,
forcing the algorithm to turn the ship parallel or anti-parallel to
the direction of the wave field. This tendency is compensated by
the time of the voyage which is increased. By decreasing more the
value of the parameter a, the contribution of the voyage time into
the total cost is decreased, leading to longer routes which are
aligned with the direction of the wave field (see curved paths of
Fig. 4).
5.3. Optimal route of real ship trip under piecewise uniform wind

field

In the last experiment, we test our new method on the
calculation of the optimal route of a ship performing the trip
from the port of Thessaloniki (40.5197N, 22.9709E) to the port of
Agios Nikolaos (35.1508N, 25.7227E). The forecast data have been
obtained from the POSEIDON system which uses floating buoys for
real time measurements and mathematical models to predict the
wave characteristics for the next 48 h [8]. In this experiment we
have to take into account several initial routes, since there are
many obstacles (islands) each of which doubles the number of
total initial routes [7].

The initial routes are plotted in Fig. 5 with the dominated
wave direction across the routes of this real physical problem.



Fig. 6. Optimal route calculated from the port of Thessaloniki to A. Nikolaos for

the case shown in Fig. 5 with the proposed algorithm (solid line) and with the

application of genetic algorithms (dashed line).
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In this figure there are three main regions, the first one is
dominated by waves coming from the North (this is the region
close to Thessaloniki), the second is dominated by waves coming
from North-East (the middle region in the Aegean sea) and the
third is dominated by waves coming from South-West (this is the
region close to Agios Nikolaos).

Fig. 6 shows two optimal routes: the obtained with our new
algorithm (solid line) and the calculated by applying genetic
algorithms (dashed line). The value of the weight parameter
was a¼ 0:5. The two routes agree except for a small part at the
beginning of the voyage. This is mainly due to the property of the
route calculated with the proposed algorithm to be continuously
transformed from the initial route. Nevertheless, the difference in
the total cost of the two routes is not significant.

An interesting trend of the optimal route calculated with our
new algorithm is that the ship is trying to ‘‘hide’’ behind the
obstacles (islands) where the magnitude of the wave height is
significantly decreased.
6. Summary and conclusions

An effective operational algorithm for the calculations of
optimal ship routes has been developed. The algorithm is based
on the simulated annealing technique, a basic tool in searching for
optimal solutions. As it was found, the searching process is
accelerated by considering advantageous choices of variations of
the initial route, i.e. those which are parallel or anti-parallel to the
direction of the wave field.

Wind field tests, simulated and real, have been performed to
demonstrate the efficiency of the proposed algorithm. The eval-
uated optimal routes have been compared with those obtained by
exhaustive and time consuming genetic algorithms. Even though,
in general, the differences are not significant, with the use of the
present algorithm some new features of the optimal route are
revealed (e.g. in the presence of the wind field the optimal route
‘‘hides’’ behind the obstacles).
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