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Abstract. Recently, the benefits of variational integrators have been combined with efficient
high order techniques. On the other hand, a special set of high order methods are the symmetric
ones, those who preserve time reversal symmetry and show improved behavior in long term
integration. In the present work, we will introduce a systematic way to construct symmetric
variational integrators. The idea is to apply the variational principle not in a set of intermediate
points but to a set of parameters that characterize a symmetric orbit between starting and
ending points. The estimated symmetric orbit may be a polynomial or a general function that
sometimes is indicated by the nature of the problem to solve. The results show excellent behavior
in long term integration and acceleration of the method when special functions are used.

1. Introduction
It is well known that the dynamics of seemingly unrelated conservative systems in mechanics,
physics, biology, and chemistry fit the Hamiltonian formalism ([1]). Included among these are
particle, rigid body, ideal fluid, solid, and plasma dynamics. An important property of the
Hamiltonian flow or solution to a Hamiltonian system is that it preserves the Hamiltonian
and the symplectic form (see, for example, [2]). A key consequence of symplecticity is that
the Hamiltonian flow is phase-space volume preserving (Liouville’s theorem). Since analytic
expressions for the Hamiltonian flow are rarely available, approximations based on discretization
of time are used. A numerical integration method which approximates a Hamiltonian flow is
called symplectic if it discretely preserves a symplectic 2-form to within numerical round off
([3, 4]) and standard otherwise. By ignoring the Hamiltonian structure, a standard method
often introduces spurious dynamics.

Symplectic integrators can be derived by a variety of ways including Hamilton-Jacobi theory,
symplectic splitting, and variational integration techniques. Early investigators, guided by
Hamilton-Jacobi theory, constructed symplectic integrators from generating functions which
approximately solve the Hamilton–Jacobi equation. The symplectic splitting technique is
based on the property that symplectic integrators form a group, and thus, the composition
of symplectic-preserving maps is also symplectic. The idea is to split the Hamiltonian into
terms whose flow can be explicitly solved and then compose these individual flows in such a
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fashion that the composite flow is consistent and convergent with the Hamiltonian flow being
simulated. On the other hand, variational integration techniques determine integrators from
a discrete Lagrangian and associated discrete variational principle. The discrete Lagrangian
can be designed to inherit the symmetry associated with the action of a Lie group, and hence
by a discrete Noether’s theorem, these methods can also preserve momentum invariants (for a
discussion of the above statements, see [1]).

Variational integration theory derives integrators for mechanical systems from discrete
variational principles ([5, 6, 7]). Variational principles have been successfully applied to partial
differential equations and to stochastic systems as well. In the general theory, discrete analogs of
the Lagrangian, Noether’s theorem, the Euler–Lagrange equations, and the Legendre transform
can be easily obtained. Moreover, variational integrators can readily incorporate holonomic
constraints (via Lagrange multipliers) and non-conservative effects (via their virtual work). The
algorithms derived from this discrete principle have been successfully tested in infinite and
finite-dimensional conservative, dissipative, smooth and non-smooth mechanical systems.

In general, the accuracy is not the terminus of the application of variational integrators,
but rather their ability to discretely preserve essential structure of the continuous system and
in computing statistical properties of larger groups of orbits, such as in computing Poincaré
sections or the temperature of a system (see, for example. On the other hand, high accuracy
can be obtained using special designed methods as it is explained in [5, 6, 7]. In the case of time
reversible systems, it has been found that both accuracy and long term behavior is dramatically
improved when using methods that are symmetric, which means that they preserve the time
reversal symmetry.

In the present work, we will introduce a systematic way to construct symmetric variational
integrators. The idea is to apply the variational principle not in a set of intermediate points but
to a set of parameters that characterize a symmetric orbit between starting and ending points.
The estimated symmetric orbit may be a polynomial or a general function that sometimes is
indicated by the nature of the problem to solve. The results show excellent behavior in long
term integration and acceleration of the method when special functions are used.

2. Symmetric Path Fitted Methods
2.1. Symmetric Methods
Conservative mechanical systems are reversible in the sense that if we invert the initial direction
of the velocity and keep the initial position, the solution trajectory remains the same ( only the
direction of motion is changed). In general, let ρ be an invertible transformation in the phase
space of a system described by the differential equation ẏ = f(y). Then, the differential equation
and the vector field f(y) are called ρ-reversible if

ρf(y) = −f(ρy) (1)

On the other hand, a map Φ(y) is called ρ-reversible if

ρ ◦ Φ = Φ−1 ◦ ρ (2)

In the case of a numerical method Φh, the condition 2 takes the form

ρ ◦ Φh = Φ−h ◦ ρ (3)

Finally, a method is symmetric if (setting ρ = −id, where id is the identity map)

Φh = Φ−1
−h (4)

or when interchanging y0 with y1 and h with −h the resulting method is the same. Symmetric
methods have several benefits-in long term integration. One of them is that their order is even
(since both the method and the adjoint one must have exactly the same truncation error).
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2.2. Path Fitted Variational Integrators
In the case of path fitted variational integrators, we have a parametric estimation of the orbit,
and the variational principles applied in order to optimize the values of the free parameters.
Thus, considering the Lagrangian of the system

L = L(qi, q̇i, t), i = 1, .., n (5)

where 2 · n is the dimension of the configuration space, we assume that the path between qik at
time tk and qik+1 at time tk+1 can be parametrized as

qi(t) = gik
(
t, qik, x

i,j
)
, j = 1, 2, . . . ,K (6)

where K is the number of free parameters. Moreover, we can assume that the parameter xi,1 is
the final point of the orbit. Thus, we have the following conditions

gik

(
tk, q

i
k, x

i,j
k

)
= qik (7)

gik

(
tk+1, q

i
k, x

i,j
k

)
= xi,1k (8)

As it has been described above, by an appropriate choice of quadrature scheme we can break up
the action integral into pieces, which we denote by Sd,k. Replacing now in the Lagrangian equ.
6, we have

Sd,k = Sd,k

(
qik, x

i,j
k

)
(9)

The condition in equ. 8 can be obtained using Lagrange multipliers λik and thus we can redefine
the discrete Lagrangian as

Sd =
N−1∑
k=0

Sd,k(qik, x
i,j
k )−

N−2∑
k=0

n∑
i=1

λik(xi,1k − q
i
k+1) (10)

Then by demanding δSd = 0 and fixing points at t = t0 and t = tN we can derive the equations
that the unknown variables must follow

∂Sd,k
∂qik

+ λik−1 = 0

∂Sd,k

∂xi,1k
− λik = 0

∂Sd,k

∂xi,Jk
= 0, j = 2, 3, . . . ,K (11)

It is easy to verify that the Lagrange multipliers λik are the momenta pik. Then, the system of
K equations

∂Sd,k
∂qik

+ pik = 0

∂Sd,k

∂xi,jk
= 0, j = 2, 3, . . . ,K (12)

is solved to give the K unknowns xi,jk , j = 1, 2, . . . ,K. Finally, for the computation of the pik+1

and qik+1 we have

pik+1 =
∂Sd,k

∂xi,1k

qik+1 = xi,1k (13)
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2.3. Polynomial fitting
Let h = tk+1 − tk. Then we can define the polynomial function

gik

(
t, qik, x

i,j
k

)
= qik

(
1− t

h

)
+ xi,1k ·

t

h
+ P

(
t, xi,2k , xi,3k , . . . , xi,Kk

)
(14)

where P
(
t, xi,2k , xi,3k , . . . , xi,Kk

)
is a polynomial in t which depends on xi,2k , xi,3k , . . . , xi,Kk and is

symmetric in the interchange of t with h− t. Moreover, P (0) = P (h) = 0.
It is easy to verify that interchanging qik with qik+1 and t with h − t (we assume here that t

represents t−tk so it varies fro 0 to h), the path remains the same and this holds for the resulting
method iff P (t) = P (h− t). Setting t(1) = t and t(2) = h− t we can write the polynomial P in
2-variables as P

(
t(1), t(2)

)
. Thus, P must be a symmetric polynomial. In general, let x1, . . . , xn

be variables, and denote for k ≥ 1 by pk(x1, . . . , xn) the k-th power sum:

pk(x1, . . . , xn) =
∑n

i=1
xki = xk1 + · · ·+ xkn, (15)

and for k ≥ 0 denote by ek(x1, . . . , xn) the elementary symmetric polynomial that is the sum of
all distinct products of k distinct variables, so in particular

e0(x1, . . . , xn) = 1,

e1(x1, . . . , xn) = x1 + x2 + · · ·+ xn,

e2(x1, . . . , xn) =
∑

i<j xixj ,

en(x1, . . . , xn) = x1x2 · · ·xn,
ek(x1, . . . , xn) = 0, for k > n.

Then, according to the Newton’s identities

k · ek(x1, . . . , xn) =
k∑

i=1

(−1)i−1ek−i(x1, . . . , xn)pi(x1, . . . , xn), (16)

and thus we can write

P
(
t, xi,2k , xi,3k , . . . , xi,Kk

)
=

K+1∑
j=2

xi,j
(
tj + (h− t)j

)
(17)

with

xi,K+1 = −
K∑
j=2

xi,j (18)

in order to have P (0) = 0.

2.4. Trigonometric fitting
In the case of oscillatory problems, trigonometric or phase fitting can improve dramatically the
behavior of the integrators (se, for example, [5, 6]). The analysis is the same as in the polynomial
fitting, except that now we are dealing with the phase function. In detail, consider the path

qik(t) = A cos
(
f ik(t)

)
+B sin

(
f ik(t)

)
(19)
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where f(t) is a polynomial similar to that in equ. 14. Thus,

f ik(t) = f i0

(
1− t

h

)
+ f i1

t

h
+

K+1∑
j=2

f ij
(
tj + (h− t)j

)
(20)

Both constants A,B are calculated be the equations

qik(tk) = qik+1

qik(tk+1) = xi,1k

3. The 2-body problem
We now turn to the study of two objects interacting through a central force. The most famous
example of this type, is the Kepler problem (also called the two-body problem) that describes the
motion of two bodies which attract each other. In the solar system the gravitational interaction
between two bodies leads to the elliptic orbits of planets and the hyperbolic orbits of comets.

If we choose one of the bodies as the center of our coordinate system, the motion will stay
in a plane. Denoting the position of the second body by q = (q1, q2)

T , the Lagrangian of the
system takes the form (assuming masses and gravitational constant equal to 1)

L(q, q̇, t) =
1

2
q̇T q̇ +

1

|q|
(21)

The initial conditions are taken

q = (1− ε, 0)T , q̇ =

(
0,

√
1 + ε

1− ε

)T

(22)

where ε is the eccentricity of the orbit. In the first experiment, we take the eccentricity ε = 0.5
and constant step size h = 0.05 and plot the relative error in the energy during one period for
several number of path parameters K.

In our experiment, we take the eccentricity ε = 0.95 and use an adaptive time step control
in order to keep the relative error in energy smaller than 10−7. Table 1 shows the number of
integration steps needed for one period. The order of approximation is again clearly increases
with increasing K as the mean step size needed for the same error in energy increases from
1.8 · 10−3 for K = 4 to 0.1 for K = 8.

Table 1. Number of integration steps
S No of Steps
2 > 104

3 > 104

4 3526
5 460
6 421
7 181
8 142
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4. Conclusions
The use of symmetric paths as estimators for trajectories in the construction of variational
principles, produces integrators with excellent behavior in energy for long term integration.
Moreover, a generalization of the method proposed, can easily applied in order to construct high
order methods. The results show that in both stiff problems (like the 2-body one with high
eccentricity) and many body one, the symmetric variational integrator can produces accurate
and stable solutions. Moreover, the method can be easily adapted in order to use it for
the construction of trigonometric fitted or in general function fitting symmetric variational
integrators for special problems (like oscillatory ones).
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