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Abstract. Evolutionary computation techniques, like genetic algorithms, have received a lot
of attention as optimization techniques but, although they exhibit a very promising potential in
curing the problem, they have not produced a significant breakthrough in the area of systematic
treatment of constraints. There are two mainly ways of handling the constraints: the first is to
produce an infeasibility measure and add it to the general cost function (the well known penalty
methods) and the other is to modify the mutation and crossover operation in a way that they
only produce feasible members. Both methods have their drawbacks and are strongly correlated
to the problem that they are applied. In this work, we propose a different treatment of the
constraints: we induce instabilities in the evolving population, in a way that infeasible solution
cannot survive as they are. Preliminary results are presented in a set of well known from the
literature constrained optimization problems.

1. Introduction
During the last years, genetic algorithms have received much attention regarding their potential
as global optimization techniques. Since one of the most interesting and challenging field in
global optimization is the class of constrained problems (both linear and nonlinear), a lot of
effort has been recorded from researcher in this direction and several techniques have been
developed and embedded in standard genetic algorithms ([1], [2], [3], [4], [5], [6], [7]). A nice
short review of proposed methods with selected references can be found in [8].

In general, there are two ways in handling the constraints. The first one is the penalty
function methods, in which a penalty term is added to the objective function. This term should
be zero in the case of feasible solutions while in the case of constrains violation, the penalty
increases. The second method is to take extra actions in order to limit the members of the
population in the feasible region of the search space. There are several techniques that have
been proposed, from modified mutation and crossover operation with the property that they
only produce feasible offsprings from feasible parents to the death penalty method in which a
member is destroyed if it violates a certain constrain.

Both methods have their pros and cons. Penalty methods are simple and self-evident. On
the other hand, as far as the second approach is concerned, searching in the feasible region of
the search space can be a very complicated task. The method is equivalent to transform the
constrained problem to a constrain-free one. In any case, the basic requirement is that infeasible
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members cannot survive for long. It is important that the method allows for infeasible members
in order to preserve the searching capabilities of the genetic algorithm, but sooner or later, these
members must be replaced by feasible ones.

this work we develop a new approach to obtain this. Assuming a binary coding of the
chromosomes, the representation of the population of the genetic algorithm can be viewed as
an array of binary digits that oscillate with time (generations). As the solution is approached,
these oscillations are decreased until they are disappear when the genetic algorithm reaches the
global minimum. Instead of replacing infeasible solutions with feasible ones (modifying and thus
oscillate the binary digits), we could obtain the same result by inducing instabilities (oscillations)
to the infeasible members of the populations without modifying the objective function. In the
following, we shall investigate this idea by tuning the mutation and crossover probabilities
according to the feasibility of a member of the population.

2. Formulation
Consider the general nonlinear programming problem

Minimize f(x), x ∈ Rn (1)

subject to q equality constraints
hi(x) = 0 , i = 1...q (2)

and m− q inequality constraints

gj(x) ≥ 0 , j = q + 1...m (3)

We can now define a measure of infeasibility ci of constrain i by

ci(x) = wi ·
{ δb(h

i(x)) , i = 1...q
ua(gi(x)) , i = q + 1...m

(4)

where wi is a weight in order to bring the constrains in a comparable between them range of
values and a, b are positive constants. The functions ua and δb are given:

ua(x) =
λ(ax)

1− λ(ax)
(5)

and

δb(x) =
λ(1− b|x|)

1− λ(1− b|x|)
(6)

where λ(x) is a continuous and at least k-times differentiable function (the value of k will be
calculated later) with the property that is zero if x ≥ 0, and for x < 0 is increasing and

lim
x→−∞

λ(x) = 1 (7)

It can be easily proved now that ci(x) equals to zero for feasible solutions and ci(x) are
everywhere Ck functions if this is true for the functions hi(x) and gj(x). Moreover, a very
important property of ua(x) and δb(x) is that their n-th derivative at x = 0 is zero for every
n ≤ k. Fig. 1 shows the general shape of the functions ua(x) and δb(x) for different values of a
and b. The values of the functions ci(x) for a specific member x of the population, measure how
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Figure 1. Functions ua(x) and δb(x) for different values of a and b.

deep in the infeasible region, the member lies. Consider now a feasible member x. If we induce
a change ∆x in the member, the infeasible measure becomes

ci(x+ ∆x) =
∂k+1ci

∂xj1 ...∂xjk+1
∆xj1 · ... ·∆xjk+1 +

O(|∆x|k+2) (8)

while for an infeasible member, the infeasibility measure becomes

ci(x+ ∆x) = ci(x) +
∂ci

∂xj
∆xj +O(|∆x|2) (9)

The vector ∂ci

∂xj now shows us the direction of the steepest descent (or ascent) of the infeasibility

measure ci. An important conclusion of the above analysis, is that, if we let k to be big enough,
then any small change in a feasible member, will produce a feasible member again, since from
eq. (8) the infeasibility measure will be negligible. The ideal case is if we can make k → ∞.
Fortunately, this can be obtained if we select

λ(x) =
{
e−

1
x2 , x < 0

0 , x ≥ 0
(10)

It can be easily proved that λ(x) is a C∞ function with λ(n)(x) = 0 for every n. Using now eq.
(10) to define the infeasibility measure, we have ensured that (i) every infeasible member will
have a measure which increases with increasing distance of the member from the feasible part of
the search space, (ii) every feasible member will have a null measure and most important that
(iii) a small change of a feasible member will produce again a feasible one. We can now use
these properties and define mutation and crossover probabilities in order to induce instabilities
in the infeasible members.

2.1. Mutation
For every member x of the population, we construct the vector sj by

sj =
m∑
i=1

∂ci

∂xj
(11)
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If the |s| equals to zero, then we use the standard mutation probability, otherwise we produce a
random integer number j between 1 and m with probability

p(j) =
sj
|s|

(12)

and mutate a random bit in the binary encoding of the j-th part of the chromosome representing
the member x. Here we assume that the chromosome uses a Gray binary code to encode the
n-variables of the problem. Each variable occupies a continuous part of bits in the chromosome.

The result of this operation is that every infeasible member will mutate, making impossible
the stabilization of the solution in the infeasible area of the search space. But for a feasible
member, this mechanism produce no effect. Mutation will occur as in the standard genetic
algorithm in order to span the search space.

2.2. Crossover
Consider now the case where a member x of the population is candidate for crossover. There
are two possibilities. The first one is that x is a feasible solution. In this case we should enhance
crossover with the hope that offsprings from x will inherit the feasibility. The other case is when
x is an infeasible solution. Suppose that the other parent is member y. If y is a feasible solution,
then again we use the standard crossover probability. If y is infeasible, then it might violate the
same or different constraints as x. If the same constraints are violated from both x and y, then
it is likely that offsprings will inherit this property. But if x and y violate different constraints, it
is possible that an offspring inherits the good part of the genetic information from each parent.
In order to quantify this idea, we modify the standard crossover probability pc by

p′c = pc/(1 + sx · sy) (13)

where sx and sy are the vectors defined in eq. (11) for the parents x and y. It is clear that if any of
the members is feasible, then the crossover probability is that of the standard genetic algorithm,
but if both x and y are infeasible, the crossover probability is decreased with increasing number
of common violated constrains.

2.3. Selection
The selection mechanism is important for two reasons: first it enhances the best individuals
to crossover and second, it selects between the individuals the best ones to survive. Since the
searching mechanism of a genetic algorithm is based on crossover and mutation, the selection
mechanism forces the searching to be performed in areas of the search space which are close to
the best individuals. By enhancing crossover of the best individuals, the selection mechanism
results in searching near these individuals and by allowing them to survive, this searching
is continued. Selection can be performed only by defining an ordering relation between the
members of the population, and this is achieved by the fitness function and in the case of
constrained optimization by both the fitness and penalty functions.

Consider now a different mechanism which leads to the same result as the selection mechanism
described before. Every member of the population has its own clock which counts how much
time this member has lived. A member dies if the number of ticks of its clock cross a predefined
level. The frequency of the clock is proportional to the value of the objective function. Thus,
the smaller the value of the objective function for a member, the slower the frequency of the
clock of this member and the longer this member will live. Let

F = f(x) and C =
m∑
i=1

ci(x) (14)
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be the value of the objective function and a measure of the infeasibility for a given member x
respectively. Now, combine these two measures to create the clock frequency of the member

Ω = F + iC (15)

The member x continues to survive as long as

|eiΩt|
winding number of curve eiΩt

> threshold (16)

where the winding number of a closed curve in the plane around a given point is an integer
representing the total number of times that curve travels counterclockwise around the point and
threshold is a predefined value. For a feasible member, the numerator of equation (16) is always
1 and that member dies when

F · t
2π

>
1

threshold
(17)

The condition now that best members live more (and thus crossover and mutate more) is fulfilled.
On the other hand, for an infeasible member, the numerator of equation (16) decreases with
time and thus this member will die sooner.

2.4. Technical details
It is clear from the analysis of the proposed algorithm that the number of the individuals in the
population is variable. In the first few generations, every member of the population survives,
so it is a good practice to start with a small size of the population. Since the value of the
objective function may change for a specific member (due to mutation), we have to update
at every generation and for all members the phase Ωt. Finally, it is a natural selection to
transform every calculated quantity in the population according to its average value. Since
evolution operators depend on probabilities, only relevant probabilities are of interest.

3. Experimental results
The performance of the proposed constraint handling method has been evaluated using a set
of 11 test cases ([9],[10]). These test cases include various forms of objective function (linear,
quadratic, cubic, polynomial, nonlinear), and each test case has a different number of variables
(n). The test problems also pose a range of constraint types and number of constraints [linear
inequalities (LI); nonlinear equalities (NE); and nonlinear inequalities (NI)]. The general form
of each test case is given in Table 1, which also indicates the number of constraints active at the
optimum solution (a). Note here that every optimization problem is transformed in the form
of eq. (1). For example, in G3 instead of maximizing

√
(n)n

∏n
i=1 xi, we minimize the function

1−
√

(n)n
∏n

i=1 xi.
Fig. 2 shows the result of the application of the new method in problems G1 to G11. The

error is the distance of the solution calculated from the best known solution. In this error, we
have to include the quantization error, since for the needs of this experiment we use an 8-bit
encoding of each variable, so for variable i we have an extra error ei given

ei =
range of variable i

256
(18)

The starting size of the population in all test problems was 50 members and this size changed
during the experiment as it was explained before. The probabilities for standard crossover and
mutation was 1 and 0.06 respectively. The horizontal axis of Fig. 2 corresponds to the number
of generations and of course this is in a one to one correspondence with the computational time
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Case n Objective LI NE NI a

G1 13 quadratic 9 0 0 6

G2 k nonlinear 0 0 6 1

G3 k polynomial 0 1 0 1

G4 5 quadratic 0 0 6 2

G5 4 cubic 2 3 0 3

G6 2 cubic 0 0 2 2

G7 10 quadratic 3 0 5 6

G8 2 nonlinear 0 0 2 0

G9 7 polynomial 0 0 4 2

G10 8 linear 3 0 3 6

G11 2 quadratic 0 1 0 1

Table 1: Summary of Test Cases

Figure 2. Absolute error vs number of generations for the eleven problems of table 1. In
problems G2 and G3 the number of the unknown variables was 10.

of the method. The method seems to behave well in the case of linear constraints, although it
exhibits a slow convergence in the case of non linear ones, especially G2, G3 and G9. On the
other hand, the method treats successfully the case of boundary searching (G1, G7 and G10 for
example).

Finally, it is interesting to see the dynamics of the method. First, the population size increases
during the first generations. But later, there is an almost stable population size because the
number of new offsprings are equal to the number of members that cannot survive. This is
shown if Fig. 3a and for problem G1. On the other hand, the frequency of the bit changes in the
binary representation of members is shown in Fig. 3b for the feasible and infeasible members and
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Figure 3. (a) The population size vs the number of generations. (b) The frequency of bit
changes in the binary representation of infeasible (dashed line) and feasible (solid line) members
vs the number of generations.

for the same problem G1. It is clear that bits in infeasible members oscillate with a frequency
which is one order of magnitude greater than the bit oscillation caused by standard mutation
and crossover.

4. Conclusion
A new approach for handling constrains in optimization using genetic algorithms is presented in
this letter. The new method induces instabilities in the infeasible members of the population by
mutation and selective crossover, while it introduces a new mechanism for selection by letting
every member of the population to survive a number of generations which depends on both
the fitness and the feasibility of the member. The preliminary results from the application of
the method to a well known academic set of constrained problems is very promising. Since the
method is parameter free, it might be used for complex constrained optimization problems.
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