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Abstract

In the field of numerical integration, methods specially tuned on os-
cillating functions, are of great practical importance. Such methods are
needed in various branches of natural sciences, particularly in physics,
since a lot of physical phenomena exhibit a pronounced oscillatory behav-
ior. Among others, probably the most important tool used to construct
efficient methods for oscillatory problems is the exponential (trigonomet-
ric) fitting. The basic characteristic of these methods is that their phase
lag vanishes at a predefined frequency. In this work, we introduce a new
tool which improves the behavior of exponentially fitted numerical meth-
ods. The new technique is based on the vanishing of the first derivatives of
the phase lag function at the fitted frequency. It is proved in the text that
these methods present improved characteristics in oscillatory problems.

PACS: 0.260, 95.10.E

1 Introduction

The numerical integration of systems of ordinary differential equations with
oscillatory solutions has been the subject of research during the past decades.
This type of ODEs is often met in real problems, like the Schrödinger equation
and the N-body problem. For problems having highly oscillatory solutions, the
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standard non-specialized methods can require a huge number of steps to track
the oscillations. One way to obtain a more efficient integration process is to
construct numerical methods with an increased algebraic order, although the
implementation of high algebraic order methods is not evident.

On the other hand, there are some special techniques for optimizing nu-
merical methods. Trigonometrical fitting and phase-fitting are some of them,
producing methods with variable coefficients, which depend on v = ωh, where ω
is the dominant frequency of the problem and h is the step length of integration.
More precisely, the coefficients of a general linear method are found from the
requirement that it integrates exactly powers up to degree p+ 1. For problems
having oscillatory solutions, more efficient methods are obtained when they are
exact for every linear combination of functions from the reference set

{1, x, . . . , xK , e±µx, . . . , xP e±µx} (1)

This technique is known as exponential (or trigonometric if µ = iω) fitting and
has a long history [9], [14]. The set (1) is characterized by two integer param-
eters, K and P . The set in which there is no classical component is identified
by K = −1 while the set in which there is no exponential fitting component
(the classical case) is identified by P = −1. Parameter P will be called the
level of tuning. An important property of exponential fitted algorithms is that
they tend to the classical ones when the involved frequencies tend to zero, a fact
which allows to say that exponential fitting represents a natural extension of the
classical polynomial fitting. The examination of the convergence of exponential
fitted multistep methods is included in Lyche’s theory [14]. There is a large
number of significant methods presented with high practical importance thats
have been presented in the bibliography (see for example [21], [8], [17], [1], [2],
[4], [3], [13], [7], [10], [15], [5], [16], [22], [23]. The general theory is presented in
detail in [11].

Considering the accuracy of a method when solving oscillatory problems, it
is more appropriate to work with the phase-lag, rather than the usually used
principal local truncation error. We mention the pioneering paper of Brusa
and Nigro [6], in which the phase-lag property was introduced. This is actually
another type of a truncation error, i.e. the angle between the analytical solution
and the numerical solution. On the other hand, exponential fitting is accurate
only when a good estimate of the dominant frequency of the solution is known
in advance. This means that in practice, if a small change in the dominant
frequency is introduced, the efficiency of the method can be dramatically altered.
It is well known, that for equations similar to the harmonic oscillator, the most
efficient exponentially fitted methods are those with the highest tuning level.
In the case of the Schrödinger equation, this result was already obtained for
particular two- and four-step exponentially fitted multistep methods based on
an expensive error analysis, see for example [12],[18], [19] and [20].

In this paper we present a methodology for optimizing numerical methods,
through the use of phase-lag function and its derivatives with respect to v.
More specifically, given a classical (that is with constant coefficients) numerical
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method, we can provide a family of optimized methods, each of which has zero
phase lag (the case of trigonometric fitting) or zero PL and PL′ or zero PL,
PL′ and PL′′ etc. With this new technique we provide methods that perform
well during the integration of the Schrödinger equation for high values of energy,
but also that perform well on other real problems with oscillatory solution, like
the N-body problem.

2 Phase lag analysis

Below we will consider for simplicity only first order differential equations, al-
though the same results can be easily obtained for second order equations too.
Consider the test problem

dy(t)

dt
= iω0y(t), y(0) = 1 (2)

with exact solution
y(t) = eiω0t (3)

where ω0 is a non-negative real value. Let Φ̂(h) be a numerical map which when
it is applied to a set of known past values, it produces a numerical estimation of
y(t+h). If we assume that all past values are known exactly, then the numerical
estimation ŷ(t+ h) of y(t+ h) will be

ŷ(t+ h) = α(ω0h) · ei(ω0t+φ(ω0h)) (4)

while the exact solutiion is ei(ω0t+ω0h). Then

L =
ŷ(t+ h)

y(t+ h)
= α(ω0h)e

−i(ω0h−φ(ω0h)) (5)

In the above equation (5), the term α(ω0h) is called the amplification factor,
while the term l(ω0h) = ω0h− φ(ω0h) is called the phase lag of the numerical
map. In the case that α(ω0h) = 1 and l(ω0h) = 0, we say that the numerical
map Φ(h) is exponentially fitted at the frequency ω0 and at the step size h.

Suppose now that the method Φ̂(h) has been designed in order to solve
exactly equation (2). But in practice, only an estimation of the frequency ω0 is
known. Thus, it is of great importance to know the behavior of the method at
frequencies close to the estimated one, so we apply the method to the equation

dy(t)

dt
= iωy(t), y(0) = 1 (6)

and calculate the phase lag l(u), where u = ωh. Since the method integrates
exactly equation (2), the phase lag function l(u) has a zero at point u0 = ω0h

and is given by
l(u) = u− φ(u) (7)
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But since φ(u0) = u0 we have

l(u) = u− φ(u0)−
dφ(u)

du
|u=u0

(u − u0) +

∞
∑

n=2

d(n)φ(u)

dun
|u=u0

(u− u0)
n

n!
(8)

or

l(u) = (u− u0)

(

1− dφ(u)

du
|u=u0

)

+

∞
∑

n=2

d(n)φ(u)

dun
|u=u0

(u− u0)
n

n!
(9)

and thus we conclude that in order to maximize the phase lag order at frequen-
cies close to u0 = ω0h we must at least have

dφ(u)

du
|u=u0

= 1 (10)

while in order to obtain even higher order in phase lag, the higher derivatives
of φ(u) at point u0 must vanish.Since

l′(u) = 1− φ′(u), l(p)(u) = φ(p)(u), p > 1 (11)

we have the following theorem
Theorem 1. Consider a linear method Φ̂ which solves exactly the equation

(2) and when it is applied to the equation y′ = iωy, with ω = ω0+δ, it produces
a phase lag function l(u), u = ωh. Then, if the phase lag function has its s first
derivatives at point v0 = ω0h equal to zero, then the phase lag function l(u) is
of order at least s in δ.

Supose now that the method Φ̂ depends on M independent parameters and
let Φ̂c the classical method which is constructed by setting M equations max-
imizing the algebraic order of the method. Let Φ̂s be the method which is
constructed with M − 1− s equations maximizing the algebraic order, 1 equa-
tion for vanishing the phase lag at a frequency ω0h and s equations for vanishing
the s first derivatives of the phase lag at the same point ω0h. It is easily now
calculated that the local truncation error of the method Φ̂s is given by

ltes = α(u)
(

e−il(u) − 1
)

(12)

when the working frequency ω0 → 0. But since the method is at least of order
M − 1− s we have

ltes = hM−s(l(u0)− il′(u0)(ω − ω0)h

+
∑∞

j=2

(

λj l
(j)(u0) + gj(l

(1)(u0), . . . , l
(j−1)(u0))

)

hj (13)

with gj be a polynomial function of the j− 1 first derivatives of l(u) at point u0

with gj(0, 0, . . . , 0) = 0. Since now l(u0) = 0 and the s first derivatives of l(u)
at u0 vanish, we have that in the limit ω0 → 0

ltes = chM+1 = ltec (14)

where ltec is the local truncation error of the classical method Φ̂c. Thus we
have the following theorem
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Theorem 2. Consider a linear method Φ̂s which is constructed by de-
manding (i) maximal algebraic order and (ii) that the phase lag and its s first
derivatives vanish at some given frequency ω0. Then, when ω0 → 0, the method
is identical with the classical one Φ̂c which is constructed by demanding only
maximal algebraic order.

3 Numerical results

In order to follow the dynamics of the method constructed, vanishing the first
derivatives of the phase lag function, we consider the simple 2− step symmetric
formula

yn−1 − 2 · yn + yn+1 = h2 (b0 · (fn−1 + fn+1) + b1fn) (15)

for the solution of the 2nd− order equation

d2y

dt2
= f(y) (16)

The coefficients of the method are calculated in three different cases as follows:

1. bc are the coefficients for the classical method, where only the maximiza-
tion of the algebraic order is taken into account

2. bt are the coefficients for the method where trigonometric fitting in a
frequency ω (v = ωh) is taken into account and

3. bs are the coefficients for the method where both trigonometric fitting
and vanishing of the first derivative of the phase lag function is taken into
account.

4. bsd are the coefficients for the method where both trigonometric fitting
and vanishing of the first and second derivatives of the phase lag function
is taken into account. In order to obtain this, the coefficient of yn in
equation (15 is perturbed from −2 to −2 + a(v).

The coefficients for the three cases are given

bc0 =
1

12
, bc1 =

5

6
(17)

bt0 =
1

12
+

1

120
v2 +

17

20160
v4 +

31

362880
v6 +

691

79833600
v8 +

5461

6227020800
v10 +

929569

10461394944000
v12 +O

(

v14
)

(18)

bt1 =
5

6
− 1

60
v2 − 17

10080
v4 − 31

181440
v6 − 691

39916800
v8 −

5461

3113510400
v10 − 929569

5230697472000
v12 +O

(

v14
)

(19)
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bs0 =
1

12
+

1

120
v2 +

17

20160
v4 +

31

362880
v6 +

691

79833600
v8 +

5461

6227020800
v10 +

929569

10461394944000
v12 +O

(

v14
)

(20)

bs1 =
5

6
− 1

60
v2 +

5

2016
v4 +

29

181440
v6 +

139

7983360
v8 +

5459

3113510400
v10 +

185917

1046139494400
v12 +O

(

v14
)

(21)

bsd0 =
1

12
+

1

80
v2 +

41

20160
v4 +

1219

3628800
v6 +

8887

159667200
v8 +

8045189

871782912000
v10 +

16009177

10461394944000
v12 +O

(

v13
)

(22)

bsd1 =
5

6
− 1

40
v2 +

17

2016
v4 +

1811

1814400
v6 +

13817

79833600
v8 +

12478951

435891456000
v10 +

24838031

5230697472000
v12 +O

(

v13
)

(23)

a(v) = − 1

240
v6 − 1

2016
v8 − 1

11520
v10 − 2291

159667200
v12 −

62879

26417664000
v14 +O

(

v15
)

(24)

The problem under test is the 2-body problem and the 2nd order equation
is

d2

dt2

(

y1(t)
y2(t)

)

= − 1
√

y21(t) + y22(t)

(

y1(t)
y2(t)

)

(25)

with initial conditions

(

y1(0)
y2(0)

)

=

(

1− ǫ

0

)

,

(

y1(0)
y2(0)

)′

=

(

0
√

1+ǫ
1−ǫ

)

(26)

and exact solution
(

y1(t)
y2(t)

)

=

(

cos(u)− ǫ√
1− ǫ2sin(u)

)

(27)

and
u− ǫsin(u)− t = 0 (28)

In Figure 1 the error in position calculation is plotted for the four methods.
The working frequency in the trigonometric fitted methods has been estimated
by ω = 1

(y2

1
+y2

2
)
3

4

[1]. Finally in Figure 2 the phase lag for the four methods is

shown as a function of the frequency.
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4 Conclusions

A new technique has been developed in order to improve the behavior of ex-
ponential (trigonometric) fitted numerical methods for the integration of os-
cillatory problems. The new technique is based on the vanishing of the first
derivatives of the phase lag function, thus decreasing the sensitivity of the nu-
merical method to frequency variations. Moreover, it has been shown that the
new method becomes the classical one (the one who maximizes the algebraic
order) when the working frequency tends to zero.
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List of Figures

1. Mean error in position calculation in the two body problem for eccentricity
ǫ = 0.5 and step size h = 0.1. (◦) is the algebraic fitted method, (⊡) is
the trigonometric fitted method, (×) is the trigonometric fitted method
with the first derivative of the phase lag function equal to zero and (♦) is
the trigonometric fitted method with both first and second derivatives of
the phase lag function equal to zero.

2. The phase lag of the four methods as a function of frequency. (◦) is the
algebraic fitted method, (⊡) is the trigonometric fitted method, (×) is
the trigonometric fitted method with the first derivative of the phase lag
function equal to zero and (♦) is the trigonometric fitted method with
both first and second derivatives of the phase lag function equal to zero.
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Figure 1: Figure 1.
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