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Phase fitting has been extensively used during the last years to improve the behavior of numerical
integrators on oscillatory problems. In this work, the benefits of the phase fitting technique are embedded
in discrete Lagrangian integrators. The results show improved accuracy and total energy behavior in
Hamiltonian systems. Numerical tests on the long term integration (105 periods) of the 2-body problem
with eccentricity even up to 0.95 show the efficiency of the proposed approach. Finally, based on a
geometrical evaluation of the frequency of the problem, a new technique for adaptive error control is
presented.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

In the field of numerical integration, methods specially tuned
on oscillating functions, are of great practical importance. Such
methods are needed in various branches of natural sciences, par-
ticularly in physics, since a lot of physical phenomena exhibit a
pronounced oscillatory behavior. For a review of such methods see
[1–6] and references there in as well as the book [7].

For problems having highly oscillatory solutions, standard
methods with unspecialized use can require a huge number of
steps to track the oscillations. One way to obtain a more efficient
integration process is to construct numerical methods with an in-
creased algebraic order, although the simple implementation of
high algebraic order methods may cause several problems (for ex-
ample, the existence of parasitic solutions [8]). On the other hand,
there are some special techniques for optimizing numerical meth-
ods. Trigonometrical fitting and phase-fitting are some of them,
producing methods with variable coefficients, which depend on
v = ωh, where ω is the dominant frequency of the problem and h
is the step length of integration. This technique is known as expo-
nential (or trigonometric if μ = iω) fitting and has a long history
[9,10]. An important property of exponential fitted algorithms is
that they tend to the classical ones when the involved frequencies
tend to zero, a fact which allows to say that exponential fitting
represents a natural extension of the classical polynomial fitting.
The examination of the convergence of exponential fitted multi-
step methods is included in Lyche’s theory [10]. The general theory
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is presented in detail in [7]. Furthermore, considering the accuracy
of a method when solving oscillatory problems, it is more appro-
priate to work with the phase-lag, rather than its usual primary
local truncation error. We mention the pioneering paper of Brusa
and Nigro [11], in which the phase-lag property was introduced.
This is actually another type of a truncation error, i.e. the angle
between the analytical solution and the numerical solution. A sig-
nificant application of the phase or exponential fitting is on the
construction of symplectic methods for oscillatory problems en-
countered in physics and chemistry [12,13].

Another approach to oscillatory and especially Hamiltonian sys-
tems is the theory of discrete variational mechanics, which was
set up in the 1960s [14–16] and then it was proposed in the
optimal control literature. It then motivated a lot of authors and
soon the discrete Euler–Lagrange equations were formulated and
the first integrators in the discrete calculus of variation and further
the multi-freedom and higher-order problems were studied. After-
wards, the canonical structure and symmetries for discrete systems
were obtained, and Noether’s theorem to the discrete case was ex-
tended [17,18]. Finally, the time as a discrete dynamical variable
was regarded [19]. A detailed description of the essential proper-
ties of variational integrators can be found in [19–21]. One of the
most important properties of variational integrators is that since
the discrete Lagrangian is an approximation of a continuous La-
grangian function, the obtained numerical integrator inherits some
of the geometric properties of the continuous Lagrangian (such
as symplecticity, momentum preservation). Thus, the use of such
methods ensures greater physical realism at lower computational
cost with as-good (or better) accuracy and no added complexity
in implementation. On the other hand, by ignoring the geometric
structure of our system, energy can dissipate or “blow up” (espe-
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cially in long time integration), the momentum is not conserved
and in general more computational cost (by decreasing the inte-
gration step size) is needed to mitigate these effects.

In the present work, the benefits of the two approach are com-
bined in order to construct discrete Lagrangian integrators with
phase fitting. To obtain this, we have adopted a test Lagrangian
problem (similar to the test ODE in the phase fitting) which is the
harmonic oscillator with given frequency ω. Then, we construct
discrete variational schemes that solve exactly the test Lagrangian.
The application of the method to a general Lagrangian needs the
determination of the frequency ω at every step of the integration.
The method is applied to the 2-body problem with eccentricity up
to 0.95. The results exhibit an improved behavior of the calculated
solutions, especially in the case of total energy of the integrated
systems.

2. Discrete variational mechanics

The well-known least action principle of the continuous La-
grange–Hamilton dynamics can be used as a guiding principle to
derive discrete integrators. Following the steps of the derivation of
Euler–Lagrange equations in the continuous time Lagrangian dy-
namics, one can derive the discrete time Euler–Lagrange equations.
For this purpose, one considers positions q0 and q1 and a time step
h ∈ R , in order to replace the parameters of position q and velocity
q̇ in the continuous time Lagrangian L(q, q̇, t). Then, by consider-
ing the variable h as a very small (positive) number, the positions
q0 and q1 could be thought of as being two points on a curve
(trajectory of the mechanical system) at time h apart. Under these
assumptions, the following approximations hold:

q0 ≈ q(0), q1 ≈ q(h)

and a function Ld(q0,q1,h) could be defined known as a discrete
Lagrangian function.

Many authors assume such functions to approximate the action
integral along the curve segment between q0 and q1, i.e.

Ld(q0,q1,h) =
h∫

0

L(q, q̇, t)dt (1)

Furthermore, one may consider the very simple approximation for
this integral given on the basis of the rectangle rule described in
[20]. According to this rule, the integral

∫ T
0 L dt could be approxi-

mated by the product of the time-interval h times the value of the
integrand L obtained with the velocity q̇ replaced by the approx-
imation (q1 − q0)/h: The next step is to consider a discrete curve
defined by the set of points {qk}N

k=0, and calculate the discrete ac-
tion along this sequence by summing the discrete Lagrangian of
the form Ld(qk,qk+1,h) defined for each adjacent pair of points
(qk,qk+1).

Following the case of the continuous dynamics, we compute
variations of this action sum with the boundary points q0 and qN

held fixed. Briefly, discretization of the action functional leads to
the concept of an action sum

Sd(γd) =
n−1∑
k=1

Ld(qk−1,qk), γd = (q0, . . . ,qn−1) ∈ Q n (2)

where Ld : Q × Q → R is an approximation of L called the dis-
crete Lagrangian. Hence, in the discrete setting the correspondence
to the velocity phase space T Q is Q × Q . An intuitive motivation
for this is that two points close to each other correspond approxi-
mately to the same information as one point and a velocity vector.
The discrete Hamilton’s principle states that if γd is a motion of
the discrete mechanical system then it extremizes the action sum,
i.e., δSd = 0. By differentiation and rearranging of the terms and
having in mind that both q0 and qN are fixed, the discrete Euler–
Lagrange (DEL) equation is obtained:

D2Ld(qk−1,qk,h) + D1Ld(qk,qk+1,h) = 0 (3)

where the notation Di Ld indicates the slot derivative with respect
to the argument of Ld .

In a position-momentum form the discrete Euler–Lagrange
equations (3) can be defined by the equations below

pk = −D1Ld(qk,qk+1,h)

pk+1 = D2Ld(qk,qk+1,h) (4)

3. Phase-fitted discrete Lagrangian integrators

Summarizing the phase fitting technique, we consider for sim-
plicity only first-order differential equations, although the same
results can be easily obtained for second-order equations too. Con-
sider the test problem

dy(t)

dt
= iω0 y(t), y(0) = 1 (5)

with exact solution

y(t) = eiω0t (6)

where ω0 is a non-negative real value. Let Φ̂(h) be a numerical
map which when it is applied to a set of known past values, it
produces a numerical estimation of y(t + h). If we assume that
all past values are known exactly, then the numerical estimation
ŷ(t + h) of y(t + h) will be

ŷ(t + h) = α(ω0h) · ei(ω0t+φ(ω0h)) (7)

while the exact solution is ei(ω0t+ω0h) . Then the ratio of the esti-
mated to the exact solution is

L = ŷ(t + h)

y(t + h)
= α(ω0h)e−i(ω0h−φ(ω0h)) (8)

In the above equation (8), the term α(ω0h) is called the amplifi-
cation error, while the term l(ω0h) = ω0h − φ(ω0h) is called the
phase lag of the numerical map. In the case that α(ω0h) = 1 and
l(ω0h) = 0, we say that the numerical map Φ(h) is exponentially
fitted at the frequency ω0 and at the step size h. The technique of
phase fitting can now be considered as the vanishing or minimiza-
tion of the phase lag.

Consider now the discrete Lagrangian Ld(qk,qk+1,h) (qk corre-
sponds to time tk and qk+1 to time tk+1 = tk + h) and a set of s
intermediate points q j with q j = q(tk + c jh). The role of the num-
ber of intermediate points will be discussed later. Assuming that
c1 = 0 and cs = 1 we always have q1 = qk and qs = qk+1. Then we
can approximate Ld with the quadrature

Ld(qk,qk+1,h) = h
s∑

j=1

w j · L
(
q
(
tk + c jh

)
, q̇

(
tk + c jh

)
, c jh

)
(9)

For maximal algebraic order it is easily proved that the following
conditions must hold:

s∑
j=1

w j
(
c j)l = 1

l + 1
, l = 0,1, . . . (10)

Then, we can approximate intermediate points and their deriva-
tives with
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q j = b jqk + b̄ jqk+1

q̇ j = 1

h

(
B jqk + B̄ jqk+1

)
(11)

Consider now the test Lagrangian (harmonic oscillator) similar to
the test equation (5)

Lt = 1

2
q̇2 − 1

2
ω2q2 (12)

Then, applying the above assumptions in Eq. (3) we get

qk+1 =
∑s

j=1 w j((B j)2 + (B̄ j)2 − u2((b j)2 + (b̄ j)2))∑s
j=1 w j(u2b jb̄ j − B j B̄ j)

qk − qk−1

(13)

where u = ωh. Since the exact solution of Eq. (12) is

q(t) = Aeiωt + Be−iωt (14)

the phase lag Φ of our method can be easily calculated as

Φ = tan−1
(

sin u

Λ − cos u

)
− u (15)

where

Λ =
∑s

j=1 w j((B j)2 + (B̄ j)2 − u2((b j)2 + (b̄ j)2))∑s
j=1 w j(u2b jb̄ j − B j B̄ j)

(16)

On the other hand, trigonometric fitting can be easily obtained
by forcing Eq. (11) to reproduce the exact values given by Eq. (14).
The coefficients now can be easily calculated as

b j = cos
(
c ju

) − cos u

sin u
sin

(
c ju

)

b̄ j = sin (c ju)

sin u

B j = −u sin
(
c ju

) − u
cos u

sin u
cos

(
c ju

)

B̄ j = u
cos(c ju)

sin u
(17)

In order to avoid the round-off error for small values of u, we can
use the Taylor expansion of the expressions in Eq. (17). The first
few terms are:

b j = 1 − c j +
(

(c j)3

6
− (c j)3

18
+ c j

45

)
u4 + O

(
u5)

b̄ j = c j +
(

c j

6
− (c j)3

6

)
u2 +

(
(c j)5

120
− (c j)3

36
+ 7c j

360

)
u4

+ O
(
u5)

B j = −1 +
(

(c j)2

2
− c j + 1

3

)
u2

+
(

− (c j)4

24
+ (c j)3

6
− (c j)2

6
+ 1

45

)
u4 + O

(
u5)

B̄ j = 1 +
(

1

6
− (c j)2

2

)
u2 +

(
(c j)4

24
− (c j)2

12
+ 7

360

)
u4

+ O
(
u5) (18)

Finally, substituting the values of coefficients given by Eq. (17)
in Eq. (15), one can obtain Φ = 0. This result is expected since
trigonometric fitted methods are automatically phase fitted.
4. Frequency evaluation and error control

The final step to our method is to evaluate the frequency of the
problem. For this purpose we use the curvature of the solution and
the concept of the osculating circle. Consider a planar curve C and
a point P on this curve. If r(t) is a parametrized representation of
the curve, then we define the curvature at a point P as

k(t) = ṙ(t) × r̈(t)

|ṙ(t)|3 (19)

Then, there is a circle with radius

R = 1

|k(t)| (20)

which locally approximates the curve at point r(t) and is called
the osculating circle. Since, the velocity of a point running on top
of the curve C is |ṙ(t)|, at a small time step h the point will rotate
an angle equal to

θ = |ṙ(t)|
R

h = |ṙ × r̈|
|ṙ|2 h (21)

leading us to a frequency selection

ω = |ṙ × r̈|
|ṙ|2 (22)

Consider now the regular parametrization of the curve r (the one
that uses the curve length as the free parameter). Let s the curve
length. Then the curve u of the centers of the osculating circles is
given by

u(s) = r(s) + 1

k(s)
H(s) (23)

where H(s) is the first normal vector of the curve r at point r(s).
Then,

du(s)

ds
= −dk(s)/ds

k(s)2
H(s) (24)

which means that the center of the osculating circle is moving to
a direction normal to the curve r with velocity

v0 =
∣∣∣∣dk(s)/ds

k(s)2

∣∣∣∣ (25)

Assuming now a small displacement on curve r, it can be easily
proved that the distance that is covered by the center of the os-
culating circle is smaller than the difference of their radius which
means that the one circle is entirely inside or outside of the other
(depending on the variation of the curvature). Thus, the error in
position is bounded by∣∣∣∣
∣∣∣∣ 1

k1
− 1

k2

∣∣∣∣ − v0h

∣∣∣∣ (26)

where k1, k2 are the curvatures of the curve r at the adjacent
points and h is the time step. Fig. 1 depicts this result. Using
Eq. (26) we can adaptively control the time step of the integra-
tion, keeping the local truncation error within desired bounds.

5. Numerical test for the 2-body problem

5.1. Efficiency of the new method

We now turn to the study of two objects interacting through
a central force. The most famous example of this type, is the Ke-
pler problem (also called the two-body problem) that describes the
motion of two bodies which attract each other. In the Solar System
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Fig. 1. The osculating circles at two neighbor points P1 and P ′
2 are shown. The first

circle has its center at point O and radius R1 and the second its center at point O ′
with radius R2. If P2 is the estimated point and the time step h is small enough,
then the distance between P2 and P ′

2 is of the order of the absolute difference of
the two radii minus the distance between O and O ′ .

the gravitational interaction between two bodies leads to the ellip-
tic orbits of planets and the hyperbolic orbits of comets.

If we choose one of the bodies as the center of our coordinate
system, the motion will stay in a plane. Denoting the position of
the second body by q = (q1,q2)

T , the Lagrangian of the system
takes the form (assuming masses and gravitational constant equal
to 1)

L(q, q̇, t) = 1

2
q̇T q̇ + 1

|q| (27)

The initial conditions are taken

q = (1 − ε,0)T , q̇ =
(

0,

√
1 + ε

1 − ε

)T

(28)

where ε is the eccentricity of the orbit. In order to check the effi-
ciency of the proposed algorithm, we shall consider only high ec-
centricity (ε = 0.95). We have used a trigonometric fitted method
with 3 points (S = 3) for the calculation of the discrete Lagrangian
which are located at the middle and the endpoints of the integra-
tion interval (thus c1 = 0, c2 = 0.5 and c3 = 1). Fig. 2 compares
the proposed method with the method described in [20] (the two
methods have the same algebraic order). The results here are ob-
tained as follows: First, the phase fitted method is applied for one
period and for a given tolerance in position calculation. Then, the
energy tolerance is calculated and the method of [20] is applied
using a variable step length in order to obtain the same energy
tolerance. It is clear that the phase fitting decreases close to one
third the number of integration steps to obtain the same accuracy.

Finally, in Fig. 3 the total energy is plotted as a function of
time for 105 periods as well as the error in position (the dis-
tance between the calculated and the exact points). It is clear that
the method keeps both energy and position error in stable limits
although there is a relative increased error in energy at the per-
ihelion. This can be explained by considering the calculated from
Eq. (22) frequency of the problem (see Fig. 4). The frequency is
smooth enough almost everywhere except at the perihelion where
it changes rapidly. This means that the assumption that the fre-
quency is constant during an integration step, applies everywhere
except at the perihelion and this is the reason for the observed
increase in the total energy error. This undesirable effect can be
handled by increasing the algebraic order of the method.

5.2. Comparison with Störmer/Verlet methods

After some calculation, we obtain that for a Lagrangian of the
form

L = 1

2
q̇2 + V (q)

our method with S = 2 and (c1, c2) = (0,1) is equivalent to solving
the second-order ODE

q̈ = f (q), f = ∂V
∂q
Fig. 2. The number of integration steps needed to obtain the same accuracy in total energy for the proposed method (•) and for the method described in [20] (�).
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Fig. 3. The total energy (solid line) end the error in position (dashed line) as a function of time for eccentricity 0.95 and for 105 periods.

Fig. 4. The calculated frequency of the problem is shown for the 10 first periods.
with the Störmer/Verlet-like scheme

qn+1 + aqn + qn−1 = h2bfn (29)

with coefficients

a = − cos u − 1
, b = 1

2

(
− cos u + 1

)
(30)
cos u u cos u
This method is trigonometric fitted and thus it is interesting to
compare with other trigonometric fitted Störmer/Verlet methods.
The method we use is the trigonometric fitted Störmer/Verlet like
scheme [22]

qn+1 − 2qn + qn−1 = h2 sin2(ωh/2)
fn (31)
ωh/2
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Fig. 5. Comparison of a Störmer/Verlet trigonometric fitted scheme (dashed line) with the proposed method (solid line) in the case of the 2-body problem with eccentricity
0.9 for 10 periods and using the same number of iterations.
Fig. 5 shows the results in the case of the 2-body problem with
eccentricity 0.9 for 10 periods. Both methods are trigonometric fit-
ted, symplectic and have the same algebraic order. If we compare
the two methods with a constant time step, there is no significant
difference (the error in position and energy is of the same order,
although for the new method, it seems that since the coefficient
a of the Störmer/Verlet method is moved away from the value −2
which keeps the roots of the characteristic polynomial on the unit
circle, the accuracy of the method is decreased probably due to
parasitic solutions). But the new method, is a single step one, and
it can be easily adapted in order to keep for example the error in
energy smaller than a predefined value. In our test, both methods
use the same number of iterations. More specifically, the number
of iterations is calculated by applying the variational method with
a variable time step in order to keep the energy tolerance smaller
than 10−6.

6. Increasing the algebraic order

Until now, we have not mention anything about the role of the
number of intermediate points used to calculate the discrete La-
grangian. This can be used to increase the algebraic order of the
method. Consider Eq. (11) modified as

q j = b jqk + b̄ jqk+1 + δq j

q̇ j = 1

h

(
B jqk + B̄ jqk+1

) + δq̇ j (32)

where the corrections δq j are free parameters and the correspond-
ing corrections δq̇ j for the derivatives can be calculated

δq̇ j = 1

h

s∑
a j

kδqk (33)

k=1
where the coefficients a j
k can be easily calculated for maximal al-

gebraic order as
s∑

j=1

ak
j = 0,

s∑
j=1

ak
j

(
c j)n = n

(
ck)n−1

, n = 1,2, . . . (34)

Now, the discrete Lagrangian, beyond (qk,qk+1) depends also on
δq j . The system of Eq. (4) now is enriched with the equations
(since we want the discrete Lagrangian to be stationary)

∂Ld(qk,qk+1,h)

∂δq j
= 0, j = 1,2, . . . , s (35)

This technique is similar to those described in [23] and [24].

7. Conclusions

It has been shown in this work, that the technique of phase
fitting, when it is embedded in discrete Lagrangian integrators,
improves the accuracy and the energy behavior of the numeri-
cal method. Following the classical application of the phase fitting
technique, the discrete Lagrangian integrator is forced to solve ex-
actly the test Lagrangian of harmonic oscillator with a given self-
frequency. The coefficients of the resulting integrator, depend on
the frequency of the problem at each integration step. Geometrical
consideration lead us to a new frequency evaluation depending on
the curvature of the solution and on the principle of the osculating
circle. Furthermore, the resulting analysis gave us a new error con-
trol technique. Application of the new method to the well-known
2-body problem decreased the number of integration steps needed
to obtain the same accuracy with the classical discrete Lagrangian
of the same algebraic order to less than one third in high eccen-
tricity equal to 0.95. Moreover, the new method exhibits improved
energy behavior for long term integration (105 periods of the 2-
body problem with eccentricity equal to 0.95). Finally, a simple
method is proposed to increase the algebraic order of the new
method.
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