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Abstract. In this work, a model for evolving networks is presented based on a Brownian
particle. Each time, the Brownian particle enters the network through a randomly selected
node. The random walk is terminated after having created m-links with visited nodes. Two
strategies have been tested: in the first one, we used a generalized algorithm for the secretary
problem in order to maximize the degree of the node with which the new node is connected,
while in the second strategy, the Brownian particle creates links with nodes that meets twice.
In all cases, scale free, modular, dissasortative networks are created.

1. Introduction
During the last years, there is an increasing interest for the study of complex networks from
researchers working in diverse areas of science [1], [2], [3], [4]. Many real world complex systems
can be described by networks of nodes or agents connected with edges or interactions. These
structures are characterized by both the nature of nodes and the underlying interaction that
is represented by the edges. Among the various classes of models used to describe complex
networks, evolving random networks are by far more realistic. In these models, at each time,
a node is added to the network and using a strategy, one or more links are created with other
nodes. Let N(k, t) be the number of nodes in the network that have degree less or equal to k at
time t. Then, one can easily verify that

∂N(k, t)

∂t
= 1− qtk (N(k, t)−N(k − 1, t)) (1)

where qtk is the probability of a node with degree k to acquire an edge at time t and it is
assumed that k > m, where m is the number of edges that each node carries when it is entered
the network. The second part of equation (1) says that at each time a new node is entered the
network with degree m (thus N(k, t) is increased by 1) but those nodes who have degrre k (they
are exactly N(k, t)−N(k− 1, t)) can acquire an edge and thus the number of nodes with degree
≤ k is decreased. Taking the stationary case t → ∞ and noting that N(k, t) = tP (k), where
P (k) is the cumulative probability distribution of node degrees, we have

dP (k)

dk
=

1− P (k)

tqtk
(2)
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where he have used the fact that

N(k, t)−N(k − 1, t) ∼ tdP (k)/dk (3)

For scale free networks and for k large enough, the cumulative degree distribution must behave
as 1− Ck−γ+1 and replacing in equation (2) we get

qtk =
k

(γ − 1)t
(4)

Since t ∼
∑
k (because t is equal to the total network nodes and each node carries the same

number of edges) we have

qtk ∼
k∑
k

(5)

which says that nodes with higher degree are more likely to acquire new edges than the others.
This property is known as preferential attachement and equation (5) shows its relation to the
scale free character of random evolving networks. Since preferential attachement and scale
free behavior seem interdependent, how realistic is the fact that when a node is entering the
network, knows the degree distribution of all the other nodes? Fortunately, there are models
like the duplication-divergence one, in which the preferential attachement rule emerges at an
effective level from local principles [5]. Following this result, it is of great interest to investigate
how local principles and rules based only on limited knowledge of the network topology, can
emerge other characteristic properties of real wolrd networks (for example like assortativity or
disassortativity, modularity and self-similarity). This question gives the cause for reflection in
the current work. The current paper examines the formation of networks under the assumption
that random walkers decide to create links with network nodes applying a specific strategy.
This strategy can be the optimization of a certain outcome or it can be a simple heuristic
rule. The paper is organized as follows: in section 2 general results about random walks and
the formulation of optimal stopping strategies are given. In section 3 experimental tests are
performed and in section 4 the results from these tests are discussed.

2. Optimal Stoping Strategies in Random Walks
Since many real networks are not static, in order to build a model for them, we adopt the
hypothesis that the network grows by addition of new nodes and there is a set of rules govering
the way new nodes establish connections with old ones. The proposed model can be summarized
as follows: at each time step, a new node is entered in the network and connects with a candidate
link to a random node of the network. Then a random walk inside the network is fired, and the
final connections are decided during this walk. But before we present the details of the model,
we summarize some basic results about the random walks in networks and we give a general
formalism for optimal stoping strategies.

2.1. Random Walk in Networks
Consider the case where a new node is entered in a given network and this node has to decide
what kind of connections should establish with other nodes. In order to make this decision,
the new entered node must have some information about the other nodes, their connectivity
patterns etc. But what might be its perspective of the network’s topology? An obvious answer
is to walk the network for some time. For simplicity, we assume that the network is connected,
undirected and all edges have the same weight. Let N be the number of nodes before the enrty
of the new one and A the adjacency matrix of the network (Aij = 1 iff there is an edge between
nodes i and j, which means that i, j are nearest neighbors). The number of nearest neighbors
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of node i is its degree ki. If a t a given time t a Brownian particle is located at node i, then at
time t+ 1 it has the same probability to be in any of the nearest neighbors of node i. One can
easily verify that after a large amount of movements (compared to the total number of edges),
the probability pi for the Brownian particle to be at node i is given:

pi =
ki

kj · ej
(6)

For the Brownian particle, the observed distance between two nodes (the average number of
moves that the particle has to make in order to reach from one node to the other) depends not
only on the direct distance (the shortest path) but also on all the possible paths that lead from
one node to the other. Let dij be the observed distance between nodes i and j. Then

dij = 1 +
∑
l,l 6=j

P il d
l
j (7)

Let now B(j)lm = P lm if m 6= j and B(j)lj = 0, then the observed distances are given

[I −B(j)] ·


d1j
d2j
...
dNj

 =


1
1
...
1

 (8)

Equation 8 can be effectively solved in the case of sparse matrices (see for example [6] and
[7]). The matrix dij contsins all the necessary information about how far is node i from node j

(assuming Brownian motion). Note here that dij 6= dji (for example if the nodes i, j are connected

and the degree of i is ki = 1 while the degree of j is dj > 1 the dij = 1 but dji > 1). It can

be easily seen that nodes with high degree have a pronounced effect on dij and if the clustering
coefficient of the network is high enough, a random walk in the network for the majority of the
time is located on nodes with high degree.

One important feature of a random walk in a network is the probability that since the random
walk is started from an arbitrary node, after m steps, the current node has a specified degree.
Thus, we introduce the modified degree distribution P (m)(k) which is given:

P (m)(k) =
∑

k1,k2,...,km

P (k1) · P (k2|k1) · . . . · P (k|km) (9)

where

• P (k) is the degree distribution (the probability that a node has degree k).

• P (k|k′) is the conditioned degree distribution (the probability that a node with degree k is
connected to a node with degree k′).

Equation 9 can be rewritten using the joint degree distribution P (k, k′) (the probability that
two connected nodes have degrees k, k′):

P (m)(k) =
∑

k1,k2,...,km

P (0)(k1)
< k >m

k1 · k2 · . . . · km
P (k1, k2) · P (k2, k3) · . . . · P (km, k)

P (k1) · P (k2) · . . . · P (km)
(10)

where we have used the identity

P (k′|k) =
< k >

k

P (k, k′)

P (k)
(11)

and < k > is the mean degree. Obviously P (0)(k) = P (k).
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2.2. Optimal Stopping Strategies
Let X1, X2, . . . be the outcomes of random identical independent experiments and assume that
all of them follow the distribution F (x) (F (x) is the propbability that the outcome X ≤ x).
Suppose that a Decision Maker (DM) observes the sequence of up to n outcomes, and at each
time has two choices:either to accept or reject the current outcome. Once a decision is made (an
outcome is selected), the problem terminates. If reached the nth outcome must be selected, and
once rejected, an outcome cannot be recalled. At each time, the DM only observes an indicator
of Xt which says whether each observed oucome is the best so far. The DM’s payoff for selecting
the tth outcome with Xt = xt is itself xt, while in the classical secretary problem this payoff is
either 1 if the best outcome is selected and 0 otherwise [8], [9].

Let

It =
{

1 , ifXt = max{X1, X2, . . . , Xt−1, Xt}
0 , otherwise

(12)

The probability that the outcome Xt ≤ X given that Xt is the maximum observed one is given:

P (Xt ≤ X|It = 1) = F (X)t−1 · F (X)

= F (X)t (13)

and the density function of the variable Xt given that it is the maximum observed is given:

f(Xt|It = 1) = t · F (Xt)
t−1 · f(Xt) (14)

where f(Xt) is the unconditional density function of Xt (f(x) = F ′(x)). Let now Et be the
mean value of Xt given that it is the maximum observed, that is Et = E(Xt|It = 1). Then:

Et =

∫ 1

0
t · x · F (x)t−1 · f(x) · dx

=

∫ 1

0
x · dF (x)t (15)

Consider now the case where the DM is called to make multiple selections in order to maximize
a given function of them. Let m be the number of selections and G(X1, X2, . . . , Xm) is the
function to be maximized. Assume thatG ia a non decreasing function in any of itsm-arguments.
The adopted strategy is again the obvious one: the first c− 1 outcomes are skiped and then the
m maximal outcomes are selected (until the number of tries n is reached). In order to calculate
averages of the given function G, one has to calculate first the joint probability density function
fn,mc (xt1 , xt2 , . . . , xtm) = f(xt1 , xt2 , . . . , xtm |It1 = 1, It2 = 1, . . . , Itm = 1, t1 < t2 < . . . < tm)
with the parameters c and n for the selected strategy. The time t1 that the first outcome is
selected can be any between c and n−m. The time t2 that the second outcome is selected can
be any between t1 + 1 and n−m + 1 and finally the time tm that the last outcome is selected
can be any between tm−1 + 1 and n. Let

rt2t1 = (1− pt1) · (1− pt1+1) · . . . · (1− pt2−1) · pt2 , t1 ≤ t2 (16)

be the probability that after bypassing t1 − 1 outcomes, the t2 outcome is the first with It2 = 1
(pt is the probability that It = 1 as it was defined earlier). We can argue now that:

fn,mc (xt1 , xt2 , . . . , xtm) =
n−m∑
t1=c

rt1c · f(xt1 |It1 = 1) · fn,m−1t1+1 (xt2 , . . . , xtm)

+
rn−mc

pn−m

m∏
i=1

f(xti) (17)
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Similarly,

fn,m−1t1+1 (xt2 , . . . , xtm) =
n−m+1∑
t2=t1+1

rt2t1+1 · f(xt2 |It2 = 1) · fn,m−2t2+1 (xt3 , . . . , xtm)

+
rn−m+1
t1+1

pn−m+1

m∏
i=2

f(xti) (18)

and recursively we can calculate fn,mc . Then, the mean value of the function G is given

EG =

∫
fn,mc (xt1 , xt2 , . . . , xtm) ·G(xt1 , xt2 , . . . , xtm) · dxt1 · dxt2 · . . . · dxtm (19)

Finally, setting θEG
θc = 0 we can obtain the optimal strategy (the value of c).

3. Experimental results
3.1. Networks using optimal stopping strategies
Two networks have been constructed using the following strategies: The first network was build
using a maximum number of steps equal to 5 and a cutoff parameter equal to 2 (using the results
of the previous section). The second network was build using the same strategy, but now the
Brownian particle is allowed to travel for more time by using a maximum number of steps equal
to 20. In both networks, the Brownian particle stops its motion after making 2 links (m = 2).
The degree distribution of these two networks is drawn in figure 1. Both networks follow a power
law in degree distribution with exponents 2.4 and 2 respectively.

3.2. Networks using the m-Crossing strategy
Two networks have been constructed using the following strategy (m-Crossing strategy): a
Brownian particle is entered in the network and makes a link with the first node that it meets
twice. The motion can be continued until m-links have been created. The first network was
created using the m-Crossing strategy with m = 2, while in the second network we used m = 1.
Both networks follow a power law in degree distribution with exponents 2.4 and 1.9 respectively.
The degree distribution of these two networks is drawn in figure 1.

4. Conclusions
We have tested a model based on a Brownian particle for evolving networks. All networks
created are scale free which means that there is an emerging preferential attachment rule for the
creation of links. This can be easily verified since random walks on randomly selected network
edges, visit nodes with higher degree more often. In the case of the optimal stopping strategy, if
the number of allowed steps is high enough, the Brownian particle can reach the most connected
hubs and thus the exponent of the power law is low. On the other hand, if the number of allowed
steps is low, then a percentage of links are created randomly and thus the exponent in the power
law is higher [11].

Concerning the degree correlation, these networks are dissasortative. Concerning the
modularity of these networks, it must be quite high, since if a Brownian particle enters in
the neighborhood of a hub, and having in mind the strong dissasotativity of the network, it is
difficult to escape. Moreover, the clustering coefficient of these networks must be quite high if
the number of links created by newly entered node is > 1. Again this can be verified by the
strong dissasortativity of the network. In the case where only one link is created, the network
must have very low clustering coefficient, since the probability for the formation of a triangle is
negligible.
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Figure 1. Degree distribution for the following networks: ◦-network using optimal stopping
strategy with maximum steps 5 and cutoff paramete 2 (γ ∼ 2.4), � -network using optimal
stopping strategy with maximum steps 20 and cutoff paramete 2 (γ ∼ 2.), �- network using the
m-Crossing strategy with m = 2 (γ ∼ 2.4) and ×-network using the m-Crossing strategy with
m = 1 (γ ∼ 1.9).
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