
Data Models and Languages for Agent-Based
Textual Information Dissemination?

M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

Dept. of Electronic and Computer Engineering
Technical University of Crete
73100 Chania, Crete, Greece

manolis@ced.tuc.gr, {trifon,rautop,koutris}@mhl.tuc.gr
www.ced.tuc.gr/˜manolis

Abstract. We define formally the data models WP, AWP and AWPS
especially designed for the dissemination of textual information by dis-
tributed agent systems using communication languages such as KQML
and FIPA-ACL. We also define the problems of satisfaction and filtering
and point out that these problems are fundamental for the deployment
of our models in distributed agent architectures appropriate for informa-
tion dissemination. One such architecture currently under development
in project DIET is sketched in some detail in this paper. Finally, we
present algorithms for the problems of satisfaction and filtering, prove
the correctness of these algorithms, and calculate their computational
complexity.

1 Introduction

The selective dissemination of information to interested users is a problem arising
frequently in today’s information society. This problem has recently received the
attention of various research communities including researchers from agent sys-
tems [16, 22, 12, 28, 29], databases [18, 2, 26, 14], digital libraries [15], distributed
computing [6, 4] and others.

We envision an information dissemination scenario in the context of a dis-
tributed peer-to-peer (P2P) agent architecture like the one shown in Figure 1.
Users utilize their end-agents to post profiles or documents (expressed in some
appropriate language) to some middle-agents. End-agents play a dual role: they
can be information producers and information consumers at the same time. The
P2P network of middle-agents is the “glue” that makes sure that published doc-
uments arrive at interested subscribers. To achieve this, middle-agents forward
posted profiles to other middle-agents using an appropriate P2P protocol. In
this way, matching of a profile with a document can take place at a middle-
agent that is as close as possible to the origin of the incoming document. Profile
? This work was carried out as part of the DIET (Decentralised Information Ecosys-

tems Technologies) project (IST-1999-10088), within the Universal Information
Ecosystems initiative of the Information Society Technology Programme of the Eu-
ropean Union.

2 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

Figure 0nd-agents and middle-agents

middle-
agent

middle-
agent

middle-
agent

middle-
agent

middle-
agent

end-
agent

end-
agent

end-
agent

end-
agent

end-
agent

subscription

notification

subscription

notification

Figure 1. End-agents and middle-agents

Fi
g

notification

notification

notification

middle-
agent

middle-
agent

middle-
agent

middle-
agent

middle-
agent

profile

document

document

document

profile

document

document

Fig. 1. A distributed P2P agent architecture for information dissemination

forwarding can be done in a sophisticated way to minimize network traffic e.g.,
no profiles that are less general than one that has already been processed are
actually forwarded.

In their capacity as information producers, end-agents can also post adver-
tisements that describe in a “concise” way the documents that will be produced
by them. These advertisements can also be forwarded in the P2P network of
middle-agents to block the forwarding of irrelevant profiles towards a source.
Advertisement forwarding can also be done in a sophisticated way using ideas
similar to the ones for profile forwarding.1

Our work in this paper concentrates on models and languages for express-
ing documents and queries/profiles in textual information dissemination systems
that follow the general architecture of Figure 1.2 We are motivated by a desire
to develop useful agent systems in a principled and formal way, and make the
1 Most of the concepts of the architecture sketched above are explicit (or sometimes

implicit) in the KQML literature and subsequent multi-agent systems based on it
[16, 22, 12, 28, 29]. Unfortunately the emphasis in most of these systems is on a sin-
gle central middle-agent, making the issues that would arise in a distributed setting
difficult to appreciate. In our opinion, the best presentation of these concepts avail-
able in the literature can be found in [6] where the distributed event dissemination
system SIENA is presented. SIENA does not use terminology from the area of agent
systems but the connection is obvious.

2 We use the terms query and profile interchangeably. In an information dissemination
setting, a profile is simply a long-standing query. We do not consider advertisements,
but it should be clear from our presentation that appropriate subsets of the query
languages that we will present could be used for expressing advertisements as well.

Textual Information Dissemination 3

following technical contributions. We define formally the models WP,AWP and
AWPS, and their corresponding languages for textual information dissemina-
tion in distributed agent systems. Data model WP is based on free text and
its query language is based on the boolean model with proximity operators. The
concepts of WP extend the traditional concept of proximity in IR [3, 8, 9] in a
significant way and utilize it in a content language targeted at information dis-
semination applications. Data model AWP is based on attributes or fields with
finite-length strings as values. Its query language is an extension of the query
language of data model WP. Our work on AWP complements recent propos-
als for querying textual information in distributed event-based systems [6, 4] by
using linguistically motivated concepts such as word and not arbitrary strings.
This makes AWP potentially very useful in some applications (e.g., alert sys-
tems for digital libraries or other commercial systems where similar models are
supported already for retrieval). Finally, the model AWPS extends AWP by
introducing a “similarity” operator in the style of modern IR, based on the vec-
tor space model [3]. The novelty of our work in this area is the move to query
languages much more expressive than the one used in the information dissemi-
nation system SIFT [33] where documents and queries are represented by free
text. The similarity concept of AWPS is an extension of the similarity concept
pioneered by the system WHIRL [11] and recently also used in the XML query
language ELIXIR [10]. We note that both WHIRL and ELIXIR target informa-
tion retrieval and integration applications, and pay no attention to information
dissemination and the concepts/functionality needed in such applications. The
models WP and AWP are also discussed in [20, 21] but no connection to agent
systems and architectures is made. The first presentation of model AWPS is
the one given in this paper.

In the second part of our paper, we built on the formal foundations of the first
part and study the computational complexity of the problems of matching and
filtering in the three models we have defined. These results are original and are
currently leading to an implementation of a prototype information dissemination
system in the context of project DIET [24, 30, 19].

The rest of the paper is organised as follows. Section 2 presents data model
WP based on free text and its sophisticated query language. Then Sections 3
and 4 build on this foundation and develops the same machinery for data models
AWP and AWPS. Section 5 presents our complexity results for the problems of
satisfaction and filtering. Finally, Section 6 gives our conclusions and discusses
future work. The proofs of the results of Section 5 are omitted. They can be found
(together with a very detailed discussion of related work) in the long version of
this paper which is available at:
http://www.intelligence.tuc.gr/~manolis/publications.html.

2 Text Values and Word Patterns

In this section we present the data model WP and its query language. WP
assumes that textual information is in the form of free text and can be queried

4 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

by word patterns (hence the acronym for the model). The basic concepts of WP
are subsequently used in Section 3 to define the data model AWP and its query
language.

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of a (finite or infinite)
set of words called the vocabulary and denoted by V.

Definition 1. A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to rep-
resent finite-length strings consisting of words separated by blanks. The length
of a text value s (i.e., its number of words) will be denoted by |s|.

We now give the definition of word-pattern. The definition is given recursively
in three stages.

Definition 2. Let V be a vocabulary. A proximity-free word pattern over vo-
cabulary V is an expression generated by the grammar

WP → w | ¬WP | WP ∧WP | WP ∨WP | (WP)

where terminal w represents a word of V. A proximity-free word pattern will be
called positive if it does not contain the negation operator.

Example 1. The following are proximity-free word patterns that can appear in
queries of a user of a news dissemination system interested in holidays:

Athens ∧ hotel ∧ ¬Hilton, holiday ∧ (beach ∨mountains)

Word patterns made of words and the Boolean operators ∧,∨ and ¬ should
be understood as in traditional IR systems and modern search engines. These
systems typically have a version of negation in the form of binary operator
AND-NOT which is essentially set difference thus safe (in the database sense
of the term [1]). For example, a search engine query wp1 AND-NOT wp2 will
return the set of documents that satisfy wp1 minus these that satisfy wp2. In our
information dissemination setting, there is no problem considering an “unsafe”
version of negation since word patterns are checked for satisfaction against a
single incoming document. Note that the previous work of [9] has not considered
negation in its word pattern language (but has considered negation in the query
language which supports attributes; see Section 3).

We now introduce a new class of word patterns that allows us to capture
the concepts of order and distance between words in a text document. We will
assume the existence of a set of (distance) intervals I defined as follows:

I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}
The symbols ∈ and ⊆ will be used to denote membership and inclusion in an
interval as usual.

The following definition uses intervals to impose lower and upper bounds on
distances between word patterns.

Textual Information Dissemination 5

Definition 3. Let V be a vocabulary. A proximity word pattern over vocabulary
V is an expression wp1 ≺i1 wp2 ≺i2 · · · ≺in−1 wpn where wp1, wp2, . . . , wpn are
positive proximity-free word patterns over V and i1, i2, . . . , in−1 are intervals
from the set I. The symbols ≺i where i ∈ I are called proximity operators.
The number of proximity-free word patterns in a proximity word pattern (i.e., n
above) is called its size.

Example 2. The following are proximity word patterns:

Holiday ≺[0,0] Inn, Mini ≺[0,0] Palace ≺[0,0] Hotel,
luxurious ≺[0,3] (hotel ∨ apartment), hotel ≺[0,∞) view

holiday ≺[0,10] beach ≺[0,10] (clean ∧ sandy)

The proximity word pattern wp1 ≺[l,u] wp2 stands for “word pattern wp1

is before wp2 and is separated by wp2 by at least l and at most u words”. In
the above example luxurious ≺[0,3] hotel denotes that the word “hotel” appears
after word “luxurious” and at a distance of at least 0 and at most 3 words.
The word pattern Holiday ≺[0,0] Inn denotes that the word “Holiday” appears
exactly before word “Inn” so this is a way to encode the string “Holiday Inn”.
We can also have arbitrarily long sequences of proximity operators with sim-
ilar meaning (see the examples above). Note that proximity-free subformulas
in proximity word-patterns can be more complex than just simple words (but
negation is not allowed; this restriction will be explained below). This makes
proximity-word patterns a very expressive notation.

Definition 4. Let V be a vocabulary. A word pattern over vocabulary V is an
expression generated by the grammar

WP → PFWP | PWP | WP ∧WP | WP ∨WP | (WP)

where non-terminals PFWP and PWP represent proximity-free and proximity
word patterns respectively. A word pattern will be called positive if its proximity-
free subformulas are positive.

Example 3. The following are word patterns of the most general kind we allow:

holiday ∧ (luxurious ≺[0,0] hotel) ∧ ¬Hilton,
holiday ∧ (hotel ≺[0,10] (cheap ∧ clean)),

V ienna ∧ ((Dolce ≺[0,0] V ita ≺[0,0] Hotel)∨ (Mini ≺[0,0] Palace ≺[0,0] Hotel))

We have here completed the definition of the concept of word pattern. We
now turn to defining its semantics. First, we define what it means for a text
value to satisfy a proximity-free word pattern.

Definition 5. Let V be a vocabulary, s a text value over V and wp a proximity-
free word pattern over V. The concept of s satisfying wp (denoted by s |= wp) is
defined as follows:

1. If wp is a word of V then s |= wp iff there exists p ∈ {1, . . . , |s|} and
s(p) = wp.

6 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

2. If wp is of the form ¬wp1 then s |= wp iff s 6|= wp1.
3. If wp is of the form wp1 ∧ wp2 then s |= wp iff s |= wp1 and s |= wp2.
4. If wp is of the form wp1 ∨ wp2 then s |= wp iff s |= wp1 or s |= wp2.
5. If wp is of the form (wp1) then s |= wp iff s |= wp1.

The above definition mirrors the definition of satisfaction for Boolean logic [25].
This will allow us to draw on a lot of related results in the rest of this paper.

Example 4. Let s be the following text value:

During our holiday in Milos we stayed in a luxurious hotel by the beach

Then s |= holiday ∧Milos.

The following definition captures the notion of a set of positions in a text
value containing only words that contribute to the satisfaction of a proximity-
free word pattern. This notion is then used to define satisfaction of proximity
word patterns.

Definition 6. Let V be a vocabulary, s a text value over V, wp a proximity-free
word pattern over V, and P a subset of {1, . . . , |s|}. The concept of s satisfying
wp with set of positions P (denoted by s |=P wp) is defined as follows:

1. If wp is a word of V then s |=P wp iff there exists x ∈ {1, . . . , |s|} such that
P = {x} and s(x) = wp.

2. If wp is of the form wp1 ∧wp2 then s |=P wp iff there exist sets of positions
P1, P2 ⊆ {1, . . . , |s|} such that s |=P1 wp1, s |=P2 wp2 and P = P1 ∪ P2.

3. If wp is of the form wp1 ∨ wp2 then s |=P wp iff s |=P wp1 or s |=P wp2.
4. If wp is of the form (wp1) then s |=P wp iff s |=P wp1.

Now we define what it means for a text value to satisfy a proximity word
pattern.

Definition 7. Let V be a vocabulary, s a text value over V and wp a proximity
word pattern over V of the form wp1 ≺i1 wp2 ≺i2 · · · ≺in−1 wpn. Then s |=
wp iff there exist sets P1, P2, . . . , Pn ⊆ {1, . . . , |s|} such that s |=Pj wpj and
min(Pj) − max(Pj−1) − 1 ∈ ij−1 for all j = 2, . . . , n (the operators max and
min have the obvious meaning).

Example 5. The text value of Example 4 satisfies the following word patterns:

luxurious ≺[0,0] hotel ≺[0,5] beach
luxurious ≺[0,0] (hotel ∨ apartment) ≺[0,5] beach,
(holiday ∧Milos) ≺[0,10] luxurious ≺[0,0] hotel

The sets of positions required by the definition are for the first and second word
pattern {10}, {11} and {14}, and for the third one {3, 5}, {10} and {11}.

If the structure of wp falls under the four cases of our most general definition
(Definition 4), satisfaction is similarly defined in a recursive way as in Definition
5 (for Cases 1, 3 and 4) and Definition 7 (for Case 2).

Example 6. The text value of Example 4 satisfies word pattern

holiday ∧ (luxurious ≺[0,0] hotel ≺[0,5] beach).

Textual Information Dissemination 7

3 An Attribute-Based Data Model and Query Language

Now that we have studied the data model WP in great detail, we are ready to
define our second data model and query language. Data model AWP is based
on attributes or fields with finite-length strings as values (in the acronym AWP,
the letter A stands for “attribute”). Strings will be understood as sequences of
words as formalised by the model WP presented earlier. Attributes can be used
to encode textual information such as author, title, date, body of text and so
on. AWP is restrictive since it offers a rather flat view of a text document, but
it has wide applicability as we will show below.

We start our formal development by defining the concepts of document
schema and document. Throughout the rest of this paper we assume the ex-
istence of a countably infinite set of attributes U called the attribute universe.

Definition 8. A document schema D is a pair (A,V) where A is a subset of
the attribute universe U and V is a vocabulary.

Example 7. An example of a document schema for a news dissemination appli-
cation is

D = ({SENDER, EMAIL, BODY }, E).

Definition 9. Let D be a document schema. A document d over schema (A,V)
is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value over V, and
there is at most one pair (A, s) for each attribute A ∈ A.

Example 8. The following is a document over the schema of Example 7:

{ (SENDER, “John Brown”), (EMAIL, “jbrown@yahoo.com”),
(BODY, “During our holiday in Milos we stayed in a luxurious hotel by the beach”) }

The syntax of our query language is given by the following recursive defini-
tion.

Definition 10. Let D = (A,V) be a document schema. A query over D is a
formula in any of the following forms:

1. A A wp where A ∈ A and wp is a positive word pattern over V. The formula
A A wp can be read as “A contains word pattern wp”.

2. A = s where A ∈ A and s is a text value over V.
3. ¬φ where φ is a query containing no proximity word patterns.
4. φ1 ∨ φ2 where φ1 and φ2 are queries.
5. φ1 ∧ φ2 where φ1 and φ2 are queries.

Example 9. The following are queries over the schema of Example 7:

SENDER A (John ≺[0,2] Smith),
¬SENDER = “John Smith” ∧ (BODY A (Milos ∧ (hotel ≺[0,5] beach)))

Let us now define the semantics of the above query language in our dissemi-
nation setting. We start by defining when a document satisfies a query.

8 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

Definition 11. Let D be a document schema, d a document over D and φ a
query over D. The concept of document d satisfying query φ (denoted by d |= φ)
is defined as follows:

1. If φ is of the form A A wp then d |= φ iff there exists a pair (A, s) ∈ d and
s |= wp.

2. If φ is of the form A = s then d |= φ iff there exists a pair (A, s) ∈ d.
3. If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1.
4. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.
5. If φ is of the form φ1 ∨ φ2 then d |= φ iff d |= φ1 or d |= φ2.

Example 10. The first query of Example 9 is not satisfied by the document of
Example 8 while the second one is satisfied.

4 Extending AWP with Similarity

Let us now define our third data model AWPS and its query language. AWPS
extends AWP with the concept of similarity between two text values (the letter
S stands for similarity). The idea here is to have a “soft” alternative to the “hard”
operator A. This operator is very useful for queries such as “I am interested in
documents sent by John Brown” which can be written in AWP as

SENDER A (John ≺[0,0] Brown)

but it might not be very useful for queries “I am interested in documents about
the use of ideas from agent research in the area of information dissemination”.

The desired functionality can be achieved by resorting to an important tool
of modern IR: the weight of a word as defined in the Vector Space Model (VSM)
[3, 23, 31]. In VSM, documents (text values in our terminology) are conceptually
represented as vectors. If our vocabulary consists of n distinct words then a text
value s is represented as an n-dimensional vector of the form (ω1, . . . , ωn) where
ωi is the weight of the i-th word (the weight assigned to a non-existent word is
0). With a good weighting scheme, the VSM representation of a document can
be a surprisingly good model of its semantic content in the sense that “similar”
documents have very close semantic content. This has been demonstrated by
many successful IR systems recently (see for example, WHIRL [11]). 3

In VSM, the weight of a word is computed using the heuristic of assign-
ing higher weights to words that are frequent in a document and infrequent in
the collection of documents available. This heuristic is made concrete using the
concepts of word frequency and the inverse document frequency defined below.
3 Note that in the VSM model and systems adopting it (e.g., WHIRL [11]) word stems,

produced by some stemming algorithm [27], are forming the vocabulary instead
of words. Additionally, stopwords (e.g., “the”) are eliminated from the vocabulary.
These important details have no consequence for the theoretical results of this paper,
but it should be understood that our current implementation of the ideas of this
section utilizes these standard techniques.

Textual Information Dissemination 9

Definition 12. Let wi be a word in document dj of a collection C. The term
frequency of wi in dj (denoted by tfij) is equal to the number of occurrences of
word wi in dj. The document frequency of word wi in the collection C (denoted
by dfi) is equal to the number of documents in C that contain wi. The inverse
document frequency of wi is then given by idfi = 1

dfi
. Finally, the number tfij ·

idfi will be called the weight of word wi in document dj and will be denoted by
ωij.

At this point we should stress that the concept of inverse document frequency
assumes that there is a collection of documents which is used in the calculation.
In our dissemination scenario we assume that for each attribute A there is a
collection of text values CA that is used for calculating the idf values to be used
in similarity computations involving attribute A (the details are given below).
CA can be a collection of recently processed text values as suggested in [33].

We are now ready to define the main new concept in AWPS, the similarity
of two text values. The similarity of two text values sq and sd is defined as the
cosine of the angle formed by their corresponding vectors:4

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖ =
∑N

i=1 wqi · wdi√∑N
i=1 w2

qi
·∑N

i=1 w2
di

(1)

By this definition, similarity values are real numbers in the interval [0, 1].
Let us now proceed to give the syntax of the query language for AWPS.

Since AWPS extends AWP, a query in the new model is given by Definition
10 with one more case for atomic queries:

– A ∼k s where A ∈ A, s is a text value over V and k is a real number in the
interval [0, 1].

Example 11. The following are some queries in AWPS using the schema of
Example 8:

BODY ∼0.6 “Milos is the ideal place for holidays by the beach”,
(SENDER A (John ≺[0,2] Brown))∧

(TITLE ∼0.9 “Hotels and resorts in Greece”),
BODY ∼0.9 “Stock options during Easter holidays”

We now give the semantics of our query language, by defining when a doc-
ument satisfies a query. Naturally, the definition of satisfaction in AWPS is as
in Definition 11 with one additional case for the similarity operator:

– If φ is of the form A ∼k sq then d |= φ iff there exists a pair (A, sd) ∈ d and
sim(sq, sd) ≥ k.

4 The IR literature gives us several very closely related ways to define the notions of
weight and similarity [3, 23, 31]. All of these weighting schemes come by the name of
tf · idf weighting schemes. Generally a weighting scheme is called tf · idf whenever
it uses word frequency in a monotonically increasing way, and document frequency
in a monotonically decreasing way.

10 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

The reader should notice that the number k in a similarity predicate A ∼k s
gives a relevance threshold that candidate text values s should exceed in order
to satisfy the predicate. This notion of relevance threshold was first proposed in
an information dissemination setting by [17] and later on adopted by [33]. The
reader is asked to contrast this situation with the typical information retrieval
setting where a ranked list of documents is returned as an answer to a user query.
This is not a relevant scenario in an information dissemination system because
very few documents (or even a single one) enter the system at a time, and need
to be forwarded to interested users (see the architecture sketched in Figure 1).

A low similarity threshold in a predicate A ∼k s might result in many irrel-
evant documents satisfying a query, whereas a high similarity threshold would
result in very few achieving satisfaction (or even no documents at all). In an
implementation of our ideas, users can start with a certain relevance threshold
and then update it using relevance feedback techniques to achieve a better sat-
isfaction of their information needs. Recent techniques from adaptive IR can be
utilised here [7].

Example 12. The first query of Example 11 is likely to be satisfied by the doc-
ument of Example 8 (of course, we cannot say for sure until the exact weights
are calculated in the manner suggested above). The second query is not satis-
fied, since attribute TITLE does not exist in the document. Moreover the third
query is unlikely to be satisfied since the only common word between the query
and Example 8 is the word “holiday”.

5 The Complexity of Satisfaction and Filtering

For an information dissemination architecture like the one in Figure 1 to become
a reality, two very important problems need to be solved efficiently. The first
problem is the satisfaction (or matching) problem: Deciding whether a document
satisfies (or matches) a profile. The second problem is the filtering problem: Given
a database of profiles db and a document d, find all profiles q ∈ db that match
d. This functionality is very crucial at each middle-agent and it is based on
the availability of algorithms for the satisfaction problem. We expect deployed
information dissemination systems to handle hundreds of thousands or millions
of profiles.

In this section we present PTIME upper bounds for the satisfaction problem
and filtering problem in models WP and AWP. The reader is reminded that
profiles in WP and AWP are defined by languages containing all Boolean con-
nectives and not just conjunction as in virtually all previous work in the area of
event dissemination systems (a notable exception of this rule is [4]).

5.1 Algorithms for Satisfaction

In previous research, [9] have presented a method for evaluating positive word
patterns with proximity operators kW and kN on sets of text values (Fig. 2 of

Textual Information Dissemination 11

function eppf(wp, s)
if wp is a word of V then

return { [x, x] : s(x) = wp }
else if wp is of the form wp1 ∧ wp2 then

return { [min(l1, l2), max(u1, u2)] : [l1, u1] ∈ eppf(wp1, s) and
[l2, u2] ∈ eppf(wp2, s) }

else if wp is of the form wp1 ∨ wp2 then
return { [l, u] : [l, u] ∈ eppf(wp1, s) ∪ eppf(wp2, s) }

else if wp is of the form (wp1) then
return eppf(wp1)

function prox(wp, s)
if wp is a positive proximity-free word pattern then

return eppf(wp, s)
else

Let wp be wp1 ≺i rest where rest is a proximity word pattern
return { [l1, u1] : [l1, u1] ∈ eppf(wp1, s) and there exists

a position interval [l2, u2] ∈ prox(rest, s)
such that l2 − u1 − 1 ∈ i }

end

Fig. 2. Some useful functions for deciding whether s |= wp

[9]). This method is intended to provide semantics to word patterns, and nothing
is said about the computational complexity of evaluation. In this paper we have
followed the more formal route of separating the definition of semantics from the
algorithms and complexity of deciding satisfaction.

We start with the satisfaction problem for proximity-free word patterns of
the model WP.

Lemma 1. Let s be a text value and wp a proximity-free word pattern. We can
decide whether s |= wp in O(δ + ρ) time on average where δ is the number of
words and ρ is the number of operators in wp.

We now turn to proximity word patterns. We first need the following lemma.

Lemma 2. Let s be a text value and wp a positive proximity-free word pattern.
Function eppf(wp, s) shown in Figure 2 returns a non-empty set of position
intervals O iff s |= wp. Additionally, for every set of positions P such that
s |=P wp there exists an interval [l, u] ∈ O such that

P ⊆ [l, u], min(P) = l and max(P) = u.

The set O can be computed in O((δ+ρ) |s|4) time where δ is the number of words
and ρ is the number of operators in wp.

We now use the above lemma to compute an upper bound on the complexity
of satisfaction for proximity word patterns.

12 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

Lemma 3. Let s be a text value and wp a proximity word pattern. We can
decide whether s |= wp in O(n(δmax + ρmax) |s|4) time where n is the number of
proximity free subformulas of wp, δmax is the maximum number of words in a
proximity-free subformula of wp and ρmax is the maximum number of operators
in a proximity-free subformula of wp.

We can now show that satisfaction can be decided in PTIME for all formulas
in WP.

Theorem 1. Let s be a text value and wp a word pattern. The problem of de-
ciding whether s |= wp can be solved in O(µnmax(δmax + ρmax) |s|4) time where
µ is the number of operators ∧ and ∨ in wp, nmax is the maximum number of
proximity-free subformulas in a proximity word pattern of wp, δmax is the max-
imum number of words in a proximity-free subformula of wp and ρmax is the
maximum number of operators in a proximity-free subformula of wp.

We will now show that satisfaction can be decided in PTIME for all formulas
of AWP as well.

Theorem 2. Let d be a document and φ be a query in AWP. Deciding whether
d |= φ can be done in O((E + H)(α + V)MN(∆ + P)2S4) time where E is the
number of atomic subqueries in φ, H is the number of operators in φ, α is the
number of attributes in d, V is the maximum size of a text value appearing in φ,
M is the maximum number of operators ∧ and ∨ in a word pattern of φ, N is
the maximum number of proximity-free subformulas in a proximity word pattern
of φ, ∆ is the maximum number of words in a proximity-free subformula of φ,
P is the maximum number of operators in a proximity-free subformula of φ, and
S is the maximum size of a text value appearing in d.

Now we turn to the complexity of deciding the similarity between two text
values.

Lemma 4. Let s, v be text values. We can decide whether s ∼k v in O(max(|s|, |v|))
time on average, where |s|, |v| is the size of text values s and v respectively.

We can now show that the satisfaction problem for AWPS can also be solved
in PTIME.

Theorem 3. Let d be a document and φ be a query in AWPS. To decide
whether d |= φ we need O((E +H)(α+max(S, V))MN(∆+P)2S4) time, where
all the parameters are as in Theorem 2.

Let us now consider the filtering problem introduced at the beginning of this
section. Let us assume that we have a database of profiles db and a published
event e, how can we find all the elements of db that match e efficiently? In a
brute-force fashion could solve a filtering problem by solving |db| satisfaction
problems where |db| is the size of the database of profiles db. Thus the filtering
problem for models WP and AWP can also be solved in PTIME (the exact
upper bounds are omitted because they can be easily computed using Theorems
1 and 2).

Textual Information Dissemination 13

In practice one would create indices over the database of profiles db to solve
the matching problem more efficiently. This approach has been pioneered in
SIFT [32, 33] where queries are conjunctions of keywords interpreted under the
boolean or vector space model. Similar indexing algorithms for simple arithmetic
constraints have also been presented in [26, 14, 5].

The algorithms of [32] have recently been re-evaluated extensively in [13]
and some properties overlooked in the original study of [32] were pointed out.
Additionally, it was shown that a main memory version of the most sophisti-
cated algorithm of [32] (called Key) can solve the filtering problem for millions
of profiles very efficiently. Currently, we are extending this study to the more
expressive languages of this paper.

6 Conclusions

In this paper we presented the models WP, AWP and AWPS for textual
information dissemination in distributed agent systems. We laid down the logical
foundations of these models and their corresponding languages, we formalized
two fundamental problems arising in information dissemination environments
utilizing them, and studied the computational complexity of these problems.

Our current work concentrates on extending the results of [13] to obtain
efficient algorithms for solving the filtering problem for queries in the model
AWPS. We are also implementing a prototype information dissemination system
using the architecture briefly discussed in Section 1 and the API developed in
the DIET project and discussed in [24, 30, 19].

Acknowledgements

This work was carried out as part of the DIET (Decentralised Information
Ecosystems Technologies) project (IST-1999-10088), within the Universal Infor-
mation Ecosystems initiative of the Information Society Technology Programme
of the European Union. We would like to thank the other participants in the
DIET project, from Departmento de Teoria de Senal y Comunicaciones, Univer-
sidad Carlos III de Madrid, the Intelligent Systems Laboratory, BTexact Tech-
nologies and the Intelligent and Simulation Systems Department, DFKI, for their
comments and contributions.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

2. M. Altinel and M.J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of the 26th VLDB Conference, 2000.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

14 M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris

4. A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficent filtering in
publish-subscribe systems using binary decision diagrams. In Proceedings of the
23rd International Conference on Software Engineering, Toronto, Ontario, Canada,
2001.

5. A. Carzaniga, J. Deng, and A. L. Wolf. Fast forwarding for content-based net-
working. Technical report, Dept. of Computer Science, University of Colorado,
2001.

6. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expres-
siveness in an internet-scale event notification service. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC’2000), pages
219–227, 2000.

7. U. Cetintemel, M.J. Franklin, and C.L. Giles. Self-adaptive user profiles for large-
scale data delivery. In ICDE, pages 622–633, 2000.

8. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Mapping
across Heterogeneous Information Sources. IEEE Transactions on Knowledge and
Data Engineering, 8(4):515–521, 1996.

9. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Trans-
lating Boolean Queries in a Heterogeneous Information System. ACM Transactions
on Information Systems, 17(1):1–39, 1999.

10. T. T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML documents.
In Proceedings of SIGIR’01, September 2001.

11. William W. Cohen. WHIRL: A word-based information representation language.
Artificial Intelligence, 118(1-2):163–196, 2000.

12. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In
Proceedings of IJCAI-97, 1997.

13. M. Koubarakis et. al. Project DIET Deliverable 7 (Information Brokering), De-
cember 2001.

14. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
In Proceedings of ACM SIGMOD-2001, 2001.

15. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes – A
Notification Service for Digital Libraries. In Proceedings of the Joint ACM/IEEE
Conference on Digital Libraries (JCDL’01), Roanoke, Virginia, USA, 2001.

16. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 3rd International Conference on Information and Knowledge Management
(CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM Press.

17. P.W. Foltz and S.T. Dumais. Personalised information delivery: An analysis of
information filtering methods. Communications of the ACM, 35(12):29–38, 1992.

18. M. J. Franklin and S. B. Zdonik. “Data In Your Face”: Push Technology in Per-
spective. In Proceedings ACM SIGMOD International Conference on Management
of Data, pages 516–519, 1998.

19. A. Galardo-Antolin, A. Navia-Vasquez, H.Y. Molina-Bulla, A.B. Rodriquez-
Gonzalez, F.J. Valvarde-Albacete, A.R. Figueiras-Vidal, T. Koutris, A. Xiruhaki,
and M. Koubarakis. I-Gaia: an Information Processing Layer for the DIET Plat-
form . In Proceedings of the 1st International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2002), July 15–19 2002.

20. M. Koubarakis. Boolean Queries with Proximity Operators for Infor-
mation Dissemination. Proceedings of the workshop on Foundations of
Models and Languages for Information Integration (FMII-2001), Viterbo,

Textual Information Dissemination 15

Italy , 16-18 September, 2001. In LNCS (forthcoming). Available from:
http://www.intelligence.tuc.gr/˜manolis/publications.html.

21. M. Koubarakis. Textual Information Dissemination in Distributed Event-Based
Systems. Proceedings of the International Workshop on Distributed Event-
Based systems (DEBS’02), July 2-3, 2002, Vienna, Austria. Available from:
http://www.intelligence.tuc.gr/˜manolis/publications.html.

22. D. R. Kuokka and L. P. Harada. Issues and extensions for information match-
making protocols. International Journal of Cooperative Information Systems, 5(2-
3):251–274, 1996.

23. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Massachusetts, 1999.

24. P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete, E. Bonsma,
J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin, C. Hoile, T. Koutris,
H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopou-
los, F. Wang, and C. Xiruhaki. Agents in Decentralised Information Ecosystems:
The DIET Approach. In M. Schroeder and K. Stathis, editors, Proceedings of the
AISB’01 Symposium on Information Agents for Electronic Commerce, AISB’01
Convention, pages 109–117, University of York, United Kingdom, March 2001.

25. C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
26. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based

publish/subscribe systems. In Proceedings of COOPIS-2000, 2000.
27. M.F. Porter. An Algorithm for Suffix Striping. Program, 14(3):130–137, 1980.
28. K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic Service Matchmaking Among

Agents in Open Information Environments. SIGMOD Record (ACM Special Inter-
est Group on Management of Data), 28(1):47–53, 1999.

29. K. Sycara, S. Widoff, M. Klusch, and J. Lu. LARKS: Dynamic Matchmaking
Among Heterogeneous Software Agents in Cyberspace. Autonomous Agents and
Multi-Agent Systems, 5:173–203, 2002.

30. F. Wang. Self-organising Communities Formed by Middle Agents. In Proceedings
of the 1st International Joint Conference on Autonomous Agents & Multiagent
Systems (AAMAS 2002), July 15–19 2002.

31. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kauffman Publishing, San Francisco,
2nd edition, 1999.

32. T.W. Yan and H. Garcia-Molina. Distributed selective dissemination of informa-
tion. In Proceedings of the 3rd International Conference on Parallel and Distributed
Information Systems (PDIS), pages 89–98, 1994.

33. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system.
ACM Transactions on Database Systems, 24(4):529–565, 1999.

