
Noname manuscript No.
(will be inserted by the editor)

Rewiring Strategies for Semantic Overlay Networks

Paraskevi Raftopoulou ·
Euripides G.M. Petrakis ·
Christos Tryfonopoulos

Received: date / Accepted: date

Abstract Semantic overlay networks cluster peers that are semantically, the-
matically or socially close into groups, by means of a rewiring procedure that
is periodically executed by each peer. This procedure establishes new connec-
tions to similar peers and disregards connections to peers that are dissimilar.
Retrieval effectiveness is then improved by exploiting this information at query
time (as queries may address clusters of similar peers). Although all systems
based on semantic overlay networks apply some rewiring technique, there is no
comprehensive study showing the effect of rewiring on system’s performance.
In this work, a framework for studying the attribution of rewiring strategies
in semantic overlay networks is proposed. A generic approach to rewiring is
presented and several variants of this approach are reviewed and evaluated.
We show how peer organisation is affected by the different design choices of the
rewiring mechanism and how these choices affect the performance of the system
overall (both in terms of communication overhead and retrieval effectiveness).
Our experimental evaluation with real-word data and queries confirms the
dependence between rewiring strategies and retrieval performance, and gives
insights on the trade-offs involved in the selection of a rewiring strategy.

Keywords peer-to-peer networks · semantic overlay networks · rewiring
strategies · information retrieval

Paraskevi Raftopoulou
University of Peloponnese, University Campus, 22100, Tripoli, Greece
Tel.: +30 2710 372262, Fax: +30 2710 372160
E-mail: praftop@uop.gr

Euripides G.M. Petrakis
Technical University of Crete, University Campus, 73100, Chania,Greece
Tel.: +30 28210 37229, Fax: +30 28210 37542
E-mail: petrakis@intelligence.tuc.gr

Christos Tryfonopoulos
Max-Plank Institute for Informatics, 66123, Saarbruecken, Germany
Tel.: +49 681 9325507, Fax: +49 681 9325507
E-mail: trifon@mpi-inf.mpg.de

2

1 Introduction

Peer-to-peer (P2P) systems offer the potential for low-cost sharing of informa-

tion, while ensuring autonomy and privacy of the participating entities. The

main idea behind P2P is that, instead of relying on central components, func-

tionality is provided through decentralised overlay architectures. In overlay

networks, peers typically connect to a small set of other peers. Queries are then,

propagated to the network searching for information qualifying query criteria

by utilising existing connections and following a predetermined query forward-

ing strategy. The popularity of earlier systems, like Gnutella1 and Freenet2,

built upon the idea of unstructured overlay networks has propelled research

in this direction while lately, the proliferation of social networking has added

yet another interesting dimension to the problem of searching for content.

In Semantic Overlay Networks (SONs), peers that are semantically, the-

matically or socially similar are organised into groups. SONs, while being

highly flexible, improve query performance and guarantee high degree of peer

autonomy [2,12,23,20]. This technology has proven useful not only for infor-

mation sharing in distributed environments, but also as a natural distributed

alternative to Web 2.0 application domains, such as decentralised social net-

working in the spirit of Flickr3 or del.icio.us4. Contrary to structured overlays

that focus on providing accurate location mechanisms (e.g., [26,21]), SONs

are better suited for loose P2P architectures, which assume neither a specific

network structure nor total control over the location of the data. Additionally,

SONs offer better support of semantics due to their ability to provide mecha-

nisms for approximate, range, or text queries, and emphasise peer autonomy.

1 http://www.gnu.org/
2 http://freenetproject.org/
3 http://www.flickr.com/
4 http://www.del.icio.us.com/

3

Peer organisation in a SON is achieved through a rewiring protocol that

is (periodically) executed by each peer. The purpose of this protocol is to

establish connections among similar peers. This is achieved by creating new

connections to similar peers, and by discarding connections that are outdated

or pointing to dissimilar peers. The goal of a rewiring protocol is to create

clusters of peers with similar interests. Queries can then be resolved by routing

the query towards clusters based on their likelihood to match the query.

The management of large volumes of data in P2P networks has generated

additional interest in methods for effective network organisation based on peer

contents and consequently, in methods supporting information retrieval (IR)

over SONs (e.g., [9,8]). Most of these research proposals assume a standard

rewiring procedure for creating SONs and search the network by exploiting

certain architectural [8,27,28] or modelling [1,24,25] aspects of this organi-

sation. The effectiveness of IR methods, supporting content-based retrievals

over SONs, depends on the type of content stored by the peers, on the type of

queries allowed and most importantly, on the rewiring procedure applied and

on the efficiency of the query forwarding procedure implemented.

The present work goes one step further and suggests that the retrieval per-

formance depends on the rewiring strategy applied. To show proof of concept,

we adopt a generic P2P architecture that utilises widely adopted techniques

from SONs, such as characterisation of peers by content, peer clustering and

link rewiring. In our SON architecture, peers are characterised by documents

in the spirit of [20,14,8,23,10,13,25]. Each peer in the network maintains links

to other peers with similar content to form clusters. This is achieved through

a rewiring protocol which runs independently on each peer as in [20,14,23,

25,12,4]. The methods referred to above use the peer organisation, emerging

from the execution of the rewiring protocol, to efficiently route queries to the

clusters of peers that are more likely to answer the query. In our setting, a

4

number of choices in designing a rewiring strategy are considered and all are

implemented and evaluated (in terms of network load and retrieval efficiency)

using real-world data and queries.

This work aims at providing a better understanding on the functional issues

related to the design and performance of any rewiring protocol by answering

the following fundamental questions: (i) what is an appropriate forwarding

strategy for rewiring messages within a SON, (ii) what information should be

used to update peer connections, (iii) should peer connections be bi-directional

or just one-directional, (iv) how coherent and well-connected should a cluster

of similar peers be? Based on insight acquired by answering these questions, we

propose optimisations to the rewiring protocol. The optimal rewiring strategy

is designed based on experimental results and on the analysis of these results.

The remainder of the paper is organised as follows. Section 2 presents

proposals that implement SON-like structures to support IR functionality,

while Section 3 discusses a generic SON architecture and the related protocols.

Section 4 presents the proposed rewiring strategies that aim at better peer

organisation. The experimental evaluation of the strategies is presented in

Section 5, followed by conclusions and issues for further research in Section 6.

2 Related Work

Issues related to effective network organisation and to IR approaches imple-

menting SON-like structures have been previously raised by many researchers.

In the following, we present those focusing on architectural issues (i.e., overlay

topology, along with the corresponding protocols) and those exploiting certain

modelling aspects (e.g., models describing peer similarity).

Dealing with architectural issues, Merugu et al. [14] show that constructing

small-world-like overlay topologies improves retrieval performance. Loser et al.

[12] introduce the concept of semantic overlay clusters for super-peer networks.

5

This work aims at clustering peers that store complex heterogeneous schemes

by using a super-peer architecture. In [13], Lu et al. propose a two-tier archi-

tecture, according to which a peer provides content-based information about

neighbouring peers and determines how to route queries in the network. Along

the same lines, Klampanos et al. [8] propose an architecture for IR-based clus-

tering of peers, where a representative peer (hub) maintains information about

all other hubs and is responsible for query routing. Loser et al. [11] propose

a three-layer organisation of peers (based both on peer content and useful-

ness estimators) and suggest combining information from all layers for routing

queries. In a similar spirit, Hidayanto et al. [4] propose self-organising peers

into communities based on their content (expert network), the issued queries

(interest groups), or both the content and the queries (hybrid groups).

Emphasising on protocols, Voulgaris et al. [29] propose an epidemic pro-

tocol5 that implicitly clusters peers with similar content. In [18], Penzo et al.

propose a strategy for incremental clustering of semantically related peers.

Along the same lines, Schmitz [23] assumes that peers share concepts from

a common ontology and proposes strategies for organising peers into com-

munities with similar concepts. iCluster [20] extends these protocols by

allowing peers with multiple interests to from clusters. Jelasity and Montresor

[6] observe that aggregation (i.e., global network information as average load)

may reveal useful information while self-organising in large-scale networks, and

present epidemic protocols capable of exploiting this information.

Focusing on modelling issues, Schmitz and Loser [24] present a rewiring

model, along with evaluation metrics commonly used in SONs. In [25], Spri-

panidkulchai et al. introduce the notion of peer clustering based on similar in-

terests rather than similar content. According to this work, peers are organised

on the top of the existing Gnutella network to improve retrieval performance.

5 Epidemic protocols exploit randomness to disseminate information across peers.

6

In a similar spirit, Li et al. [10] propose creating a self-organising network

based on the semantics of data objects stored locally to peers. Aberer at al. [1]

introduce a decentralised process that, relying on pair-wise local interactions,

incrementally develops global agreement and obtains semantic interoperability

among data sources. Parreira et al. [17] introduce the notion of “peer-to-peer

dating” that allows peers to decide which connections to create and which to

avoid based on various usefulness estimators. Koloniari et al. [9] model peer

clustering as a game, where peers try to maximise the recall for their local

query workload by joining the appropriate clusters.

All the works referred to above aim at providing architectural or mod-

elling solutions to support IR over SONs. In this work, rewiring is treated as

an important system component that needs to be further investigated and op-

timised. We adopt a simple and general rewiring model and identify possible

rewiring alternatives, the combination of which make up a range of possi-

ble rewiring strategies worth exploring. We compare rewiring alternatives in

terms of efficiency and retrieval effectiveness and show the benefit resulting

from optimising the rewiring mechanism.

3 Overview

SON-based systems apply a periodic rewiring protocol to cluster peers with

similar interests [29,10], and a fireworks-like technique [27,16] is used to route

queries within the network. Peer interests may vary from descriptions of doc-

ument collections [13,20], to topics in a hierarchy [8], schema synopses [7], or

ontology concepts [23]. In iCluster [20], the interests of a peer are identified

by using its local document collection, and a single peer has a tunable and

dynamic number of interests depending on its capabilities, collection size and

content diversity. iCluster was the first system to overcome the specialisation

assumption [15] (i.e., each peer has only one interest) common in SONs.

7

3.1 Architecture

We consider a P2P network, where peers are responsible for serving both users

searching for information and users contributing information to the network.

The peers run the rewiring protocol and form clusters based on their likelihood

to contain similar content. Each peer is characterised by its information con-

tent, i.e. its document collection, which may be either automatically (by text

analysis) or manually assigned to each document (e.g., tags or index terms).

To identify its interests, a peer categorises its documents using an external

reference system, i.e. an ontology as in [23] or a taxonomy such as the ACM

categorisation system, or by clustering [3]. A peer may be assigned more than

one interests. Each peer maintains a routing index holding information for

short-range and long-range links to other peers. Short-range links correspond

to intra-cluster information (i.e., links to peers with similar interests), while

long-range links correspond to inter-cluster information (i.e., links to peers

having different interests).

Our architecture is general enough to cover fundamental design aspects of

existing semantic overlays: as typically assumed in the literature peers are cat-

egorised by their content [20,14,8,23,10,13,25] and links to other peers involve

not only similar peers, but also dissimilar ones to support the connectivity be-

tween different clusters as in [20,14,23,25]. The rewiring procedure is executed

locally by each peer and aims at clustering peers with similar content, while

queries are forwarded to peer clusters that are similar to the issued query.

3.2 Basic protocols

The main idea behind SONs is to let peers self-organise into clusters with se-

mantically similar content. Then, query execution is performed by identifying

the cluster of peers with similar content and by addressing a peer within this

cluster. In this section, we present the basic protocols that specify how peers

join a SON and self-organise into clusters, and how queries are processed.

8

3.2.1 Joining protocol

When a peer pi connects to the network, it has to follow the join protocol. Ini-

tially, pi categorises its documents into one or more categories. Consequently,

pi may have more than one interests Iiκ, with κ denoting the number of pi’s

interests, stored in its interest list I(pi). A peer interest is represented by the

corresponding index terms (if an external reference system has been used) or

by a centroid vector (if documents have been categorised by clustering).

For each distinct interest Iik, peer pi maintains a separate routing index

RIik, which contains short-range and long-range links. Entries in the routing

index are of the form (ip(pj), Ijk), where ip(pj) is the IP address of peer pj

and Ijk is the k-th interest of pj . The amount of memory required to store

the necessary information in each peer is a few hundred bytes per routing

index entry: a typical entry occupies 4 bytes for the IPv4 address of a node,

2 bytes for the port number, in addition to the description of a peer interest

(i.e., a vector of content terms). The number of routing indexes maintained

by a peer equals the number of its interests. Peers may merge or split their

routing indexes by merging or splitting their interests, reliant to changes in

their content. A routing index is initialised (when a peer is joining the network,

or upon the bootstrapping) as follows: peer pi collects in RIik the IP addresses

of s + l randomly selected peers. These links will be refined according to the

interest Iik of pi using the rewiring protocol described in the next section. The

computational cost to update the index is O(s + l), where s is the number of

short-range links and l is the number of long-range links.

In the following, for simplicity of the presentation, we assume that each

peer pi has only one interest Ii. The same discussion applies for multiple

interests, since peers maintain one routing index per interest and the rewiring

strategy is applied independently for each peer interest.

9

Procedure Rewiring(pi, Ii, τR, θ, m)
Initiated by pi when neighborhood similarity NSi drops below θ.

input: peer pi with interest Ii and routing index RIi

output: updated routing index RIi

1: compute NSi = 1
s ·

∑
∀pj∈RIi

sim(Ii, Ij)

2: if NSi < θ then
3: L ← { }
4: create FindPeers()
5: pk ← pi

6: repeat
7: send FindPeers() to

m neighbours of pk with interests most similar to Ii

8: let pj be a neighbour of pk receiving FindPeers()
9: L ← L :: 〈ip(pj), Ij〉
10: pk ← every pj receiving FindPeers()
11: τR ← τR − 1
12: until τR = 0
13: return list L to pi

14: update RIi with information from L

Fig. 1 The rewiring protocol.

3.2.2 Rewiring protocol

Peer organisation proceeds by establishing new connections (to similar peers)

and by discarding old ones. Each peer pi periodically (e.g., when its interests

have changed) initiates a rewiring procedure (independently for each interest)

by computing the intra-cluster similarity (or neighborhood similarity)

NSi =
1
s
·

∑

∀pj∈RIi

sim(Ii, Ij), (1)

where s is the number of short-range links of pi (according to interest Ii), Ij

is the interest of peer pj , pj a peer contained in the RIi, and sim() can be any

appropriate similarity function. The neighborhood similarity NSi is used here

as a measure of cluster cohesion. If NSi is greater than a threshold θ, then

pi does not need to take any further action, since it is surrounded by similar

peers. Otherwise, pi issues a FindPeers(ip(pi), Ii, L, τR) message, where L

is a list, and τR is the time-to-live (TTL) of the message. List L is initially

empty and will be used to store tuples of the form 〈ip(pj), Ij〉, containing the

IP address and interests of peers discovered while the message traverses the

network. System parameters θ and τR need to be known upon bootstrapping.

10

A peer pj receiving the FindPeers() message appends its IP address ip(pj)

and its interest Ij to L (or the interest most similar to Ii if pj has multiple

interests), reduces τR by one and forwards the message to the m neighbour

peers (m ≤ s) with interests most similar to Ii. This message forwarding

technique is referred to in the literature as gradient walk (GW) [22,23]. When

τR = 0, the FindPeers() message is sent back to the message initiator pi.

Figure 1 illustrates the above rewiring procedure in algorithmic steps.

When the message initiator pi receives the FindPeers() message back,

it utilises the information contained in L to update its routing index RIi by

replacing old short-range links corresponding to peers with less similar interests

with new links corresponding to peers with more similar interests. Remark

that for the linkage of the peers the rewiring protocol takes into account peers’

interests, which stand for the content (and not the number) of their documents.

Peers store long-range links in their routing indexes, which stand as short

paths to dissimilar clusters. For the update of the long-range links, peer pi

uses a random walk in the network to discover peers with dissimilar interests.

3.2.3 Query processing protocol

Let us assume that user issues a query q through peer pi. Initially, pi compares

q against its interest Ii
6. If sim(q, Ii) ≥ θ, where sim() can be any appropriate

similarity function between a query and a peer interest and θ is the similarity

threshold, then pi creates a message of the form Query(ip(pi), q, τb), where τb

is the query TTL, and forwards it to all its neighbours using the short-range

links in RIi. This forwarding technique is referred to as query broadcasting (or

query explosion) [23]: the query is broadcasted to the neighbours of pi, which

(due to clustering) are similar to pi and will (most likely) be able to answer q.

If sim(q, Ii) < θ, peer pi forwards a Query(ip(pi), q, τf) message with

query TTL τf to m peers connected to pi (using the short-range and the

6 If pi has multiple interests then it compares q independently against each interest.

11

Procedure Query Processing(q, pi, τf , τb, θ, m)
Compares query q against the document collection of pj , retrieves
matching documents, and forwards q to the network.

input: query q issued by peer pi and threshold θ
output: list R of documents similar to q

1: if sim(q, Ii) ≥ θ then
2: compare q against pi’s local document collection
3: if sim(q, d) ≥ θ then
4: R ← R :: 〈p(d), m(d), Sim(q, d)〉
5: send message RetRes(ip(pj), R) to pi

6: τb ← τb − 1
7: forward QUERY() to all short-range links in RIi

8: else
9: forward QUERY() to m neighbours of pi with interests

most similar to q
10: τf ← τf − 1
11: repeat the above procedure for pi’s neighbours
12: until τf = 0 or τb = 0

Fig. 2 The query processing protocol.

long-range links in RIi) with interests most similar to q. The query message

is thus, forwarded through distinct paths from peer to peer until a peer pj

similar to the query is reached. Then, q is broadcasted in the neighborhood of

this peer as described in the previous paragraph. This query forwarding tech-

nique is referred to as fixed forwarding [23], since forwarding proceeds until q

reaches a cluster of similar peers. All forwarding peers execute the aforemen-

tioned protocol and reduce τf by one at each step of the forwarding procedure.

The combination of the two parts of query routing (i.e., fixed forwarding and

broadcasting) is referred to in the literature as fireworks technique [16,27].

Notice that the value of the broadcasting TTL τb is different from the value

of fixed forwarding TTL τf . Typically, τb is smaller than τf since in broad-

casting the Query() message needs to reach peers only a few hops away (i.e.,

in the same cluster of the message recipient). In the case of fixed forwarding

the message needs to explore regions of the network that are possibly far away

from the query initiator. Figure 2 presents the query processing protocol.

12

3.2.4 Document retrieval protocol

Let us assume a peer pj similar to the query q is reached. Apart from the

forwarding protocol, pj also applies the following procedure for retrieving doc-

uments similar to q. Query q is matched against pj ’s local document collection,

and all documents d with sim(q, d) ≥ θ, where sim() can be any appropriate

similarity function between a query and a document and θ is the similarity

threshold, are retrieved and ordered by similarity to q. Subsequently, pj cre-

ates a result list R containing tuples of the form 〈p(d),m(d), sim(q, d)〉 for each

relevant document d, where p(d) is a pointer to d and m(d) are metadata de-

scribing d (e.g., document title, author and an excerpt of the document’s text

in the style of search engine result presentation). The resulting list is placed in

a message of the form RetRes= (ip(pj), R) and is returned to the peer that

initiated the query using the contact information contained in the Query()

message. In this way, query initiator pi accumulates the results obtained by

different peers, merges the different lists in a single list that contains unique

entries sorted by descending similarity and presents the results to the user.

4 Proposed Rewiring Strategies

In the following, several variants to the basic rewiring protocol are proposed

corresponding to modifications in (i) the routing technique used by peers to

forward rewiring messages, (ii) the amount of information available to peers

for updating their short-range links, (iii) the technique for establishing links,

and (iv) the strategy used by peers to update their long-range links.

4.1 Forwarding of rewiring messages

A very important component of the rewiring protocol is the routing technique

used by the peers to forward the rewiring messages. We introduce four different

message forwarding techniques for the FindPeers() message and elaborate on

the peer clustering performance.

13

4.1.1 The Gradient Walk strategy

This strategy is used in the basic rewiring protocol, where a message recipient

pj forwards the FindPeers() message to the set of m peers stored in its

routing index RIj with interests most similar to Ii.

The idea behind the Gradient Walk (GW) strategy is to forward the

rewiring message to peers which are likely to be similar to Ii, collect informa-

tion about these peers, use this information to update pi’s short-range links

and eventually position pi among similar peers. A drawback of this strategy

is encountered for the case where clusters of similar peers cannot be reached

or have not yet been formed. This is usually the case at system bootstrapping

and also, at periods of high churn, where peers that initiate a rewiring process

have low probability to discover other similar peers clustered together. In such

cases, GW is expected to lead to poor peer clustering.

4.1.2 The Random Walk strategy

Under the Random Walk (RW) strategy, a message recipient pj forwards the

FindPeers() message to a set of m randomly chosen peers stored in RIj . This

is implemented by modifying the line 7 of Figure 1 as follows:

send FindPeers() to m random neighbours of pk

The idea behind the RW strategy is to explore the network for peers with

interests similar to Ii (the interest of the message initiator pi), by making no

assumption on the clustering of the network. In this way, at periods where the

network is not well-clustered, a random exploration will increase the probabil-

ity of finding peers with interests similar to Ii. Compared to the GW strategy,

RW is expected to converge to a clustered network faster. Since peer cluster-

ing is used to support IR functionality, the RW strategy is also expected to

present better retrieval performance than the GW strategy.

14

4.1.3 The combined strategy

In the combined (GW+RW) strategy, a message recipient pj forwards the

FindPeers() message with equal probability either to (i) a set of m randomly

chosen peers, or (ii) the set of m peers with interests most similar to the

interest Ii of the initiator peer pi. This is implemented by modifying the line

7 of Figure 1. The GW+RW strategy presented here resembles the strategy

used in [23]. This strategy aims at combining the benefits from the RW and

GW strategies, as the RW strategy can be applied in unclustered networks for

reaching similar peers which are far apart from each other, while GW strategy

can be applied for exploring neighborhoods of peers.

The rationale of applying both forwarding solutions at the same time is not

only to connect pi to similar peers discovered by forwarding the message to

similar peer clusters, but also by enabling propagation of the forwarding mes-

sage to other similar peers through non-similar peers. However, the GW+RW

strategy combines the two components in a naive way by invoking each com-

ponent based on a random decision.

4.1.4 The informed strategy

Under the informed (inf-GWRW) strategy, a message recipient pj forwards

the FindPeers() message either to (i) a set of m randomly chosen peers, or

(ii) the set of m peers with interests most similar to the interest Ii of the

initiator peer pi, relying on how well the network is clustered. This strategy

goes one step further from the GW+RW strategy, since it invokes each com-

ponent based on an informed (rather than random) decision. In inf-GWRW,

pj takes into account how well the network is organised and decides whether

to use gradient or random walk for message forwarding. This is implemented

by modifying line 7 of the pseudocode shown in Figure 1 as follows:

15

if NSk ≥ θ then

send FindPeers() to

m neighbours of pk with interests most similar to Ii

else

send FindPeers() to m random neighbours of pk

Contrary to the GW+RW strategy, inf-GWRW puts emphasis on peer au-

tonomy and peer perception of network organisation.

4.2 Updating short-range links

In the basic organisation protocol, only the initiator of a FindPeers() mes-

sage may utilise the message contents to collect information about peers with

similar interests and update its routing index. In what follows, we examine

the idea of letting also peers along the forwarding path to utilise the informa-

tion collected by the message. In this way, other peers, aside from the initiator

peer, may exploit this information to update their routing indexes and improve

clustering without incurring extra message traffic.

To achieve this, we utilise a new system-wide parameter coined refinement

probability % and let peers decide whether to exploit or not the information

contained in FindPeers() message they received. This decision is taken non-

deterministically by each peer in a fully decentralised way. Parameter % takes

values in the interval [0, 1] and is used as follows: every peer receiving a Find-

Peers() message may utilise the information contained in it (i.e., the interests

of previous message recipients) with probability %. When % = 0, no peer apart

from the message initiator use the contents of FindPeers() message, while

when % = 1, all peers participating in the forwarding of the FindPeers()

message exploit the information contained in it to update their routing in-

dexes. When 0 < % < 1, a peer pj receiving a FindPeers() message exploits

the information contained in it to update its routing index with probability

16

p1 p2 p3

(a) Initial connections between peers
p1, p2 and p3

p1 p2 p3

(b) Rewired peer connections for % = 0

p1 p2 p3

(c) Rewired peer connections for % = 1

p1 p2 p3

(d) A possible rewiring of connections
for 0 < % < 1

Fig. 3 An example illustrating the usage of the refinement probability %.

%. Notice that, when % = 0 this protocol is reduced to the basic protocol.

System parameter % needs to be known upon bootstrapping. The use of % is

implemented by modifying the line 8 of Figure 1 as follows:

let pj be a neighbour of pk receiving FindPeers()

pj generates a random number x ∈ [0, 1]

if x ≤ % then update RIj with information from L

If peer pj receiving a FindPeers() message decides to utilise the informa-

tion in it, then pj updates its routing index RIj by replacing short-range links

that are outdated or pointing to peers with dissimilar interests with links

found in the message. It follows that, the initiator peer pi of FindPeers()

message always explores the information contained in the message to update

its short-range links, since this peer initiated the rewiring process.

Example 1 Let us assume a network where each peer can store only 2 links to

other similar peers (s = 2), rewiring TTL is τR = 2, and that some arbitrary

peers p1, p2 and p3 that belong to the network are all interested in the same

topic. Assume also, that these peers are initially connected to each other as

shown in Figure 3(a). In the following we demonstrate how peer organisation

is affected by different values of %.
– % = 0. When peer p1 decides to initialise a rewiring procedure, it sends

a FindPeers() message with its interest to peer p2. Remember that (by

17

definition) when % = 0 no peer apart from the message initiator use the

contents of the message. Thus, p2 just appends its own interest to it and

forwards it to peer p3. Similarly, p3 appends its interest to the message and

sends it back to the initiator peer p1 (since τR has reached 0). Subsequently,

p1 uses the information in the message and connects to p3 since they have

similar interests. The resulting (rewired) links are shown in Figure 3(b).

– % = 1. In this case, all forwarding peers exploit the information contained

in the FindPeers() message to refine their short-range links. When p1

decides to initialise a rewiring procedure it contacts p2. Since % = 1, p2 uses

the information contained in the message and creates a link to p1 as they

have similar interests (remember that the message contains also the interest

of the message initiator). Next, p2 appends its interest to the message and

forwards it to peer p3, which also uses the information contained in the

message and connects to both p1 and p2. Similarly, p3 appends its interest

to the message and sends it back to p1 that in turn, updates its routing

index. The resulting links are shown in Figure 3(c).

Notice that, p1, p2 and p3 have all their short-range links occupied with

peers that have similar interests simply by using the rewiring message that

p1 initiated. To achieve this when % = 0 would require more rewiring mes-

sages, since p2 and p3 would need to initiate their own rewiring procedure

to collect information about similar peers and refine their links. In our ex-

ample setting, % = 1 seems to achieve a good result by organising p1, p2

and p3 in a fully-connected cluster. However, this cluster (Figure 3(c)) is

isolated from the rest of the similar peers that may exist in the network,

since there is no free short-range link to connect to other similar peers (re-

member that s = 2). Creating isolated peer clusters has a negative effect

in recall, as a query might not reach all relevant clusters in the network.

18

(a) initial network
topology

(b) % = 0 (c) % = 1

Fig. 4 An example illustrating network organisation when using different values of %.

Remark that allowing peers to store more short-range links in their routing

indexes could also eliminate the isolated peer clustering problem. However,

there is a trade-off related to the size of the routing index. Increasing the

number of the short-range links eliminates the probability to create isolated

peer clusters, but also results in increasing the number of peers belonging

in a neighborhood, which in turn entails more ambiguous peer clusters.

However, the idea of peer rewiring is to cluster similar peers together,

rather than let each peer has a vast knowledge of the network, and based on

this clustering achieve good retrieval performance. In addition, increasing

the number of short-range links stored by each peer results in increasing

the message traffic in the network, since a query, according to the query

processing protocol, is broadcasted in the neighborhoods of similar peers.

Consequently, the number of short-range links stored by a peer must be

kept low compared to the number of peers in the network.

– 0 < % < 1. To avoid generating excess message traffic during rewiring (as

with % = 0) and also creating isolated peer clusters (as with % = 1), %

should be appropriately tuned to a value between 0 and 1. Figure 3(d)

shows a possible network organisation when 0 < % < 1 (in this case peer

p2 utilised the information in the rewiring message initiated by peer p1).

19

Figure 4 illustrates how % affects peer clustering. The initial peer connec-

tions are shown in Figure 4(a). Dark-coloured nodes represent peers of the

same category, whereas light-coloured nodes represent peers from other cate-

gories that the former are connected to. Notice that, when % = 0, most of the

similar peers are clustered together, but there are also peers that are hard to

reach (dark-coloured peers in the lower right part in Figure 4(b)). When % = 1

peers of the same category have formed two well-connected but disjoint neigh-

borhoods (Figure 4(c)). This reveals an inherent weakness of rewiring: similar

peers are not always clustered together, since they may form more than one

clusters. Notice that this will also affect retrieval performance since queries

are not always capable of locating all disjoint clusters in the network.

To recap, refinement probability % can be used to tune the number of

peers that update their links by exploiting the rewiring messages initiated by

other peers. In general, when % > 0 the network will converge faster to a

clustered peer organisation, while with % < 1 peers are discouraged from using

the same information to refine their short-range links. This results in creating

clusters where at least one path connecting all similar peers exist, which in

turn increases retrieval effectiveness.

4.3 Introducing symmetric links

In the basic organisation protocol, when a peer pi discovers that its interest is

similar to that of a peer pj , it is not entailed that pj is aware of this similarity.

We modify the basic protocol to facilitate symmetric links (SL) among peers.

Under this strategy, if a peer pi discovers another similar peer pj through

a FindPeers() message, pi updates its routing index RIi and sends a Sim-

Peer(ip(pi), Ii) message to pj to inform it that they share similar interests.

This is implemented by modifying the line 14 of Figure 1 as follows:
update RIi with information from L

send SimPeer(ip(pi), Ii) to pj : pj ∈ L, sim(Ii, Ij) ≥ θ

20

When pj receives a SimPeer() message, it uses the information in it to

decide whether to refine or not its short-range links with a link to pi. Notice

that pj may decide not to update its routing index RIj if it is already connected

to similar peers, i.e. sim(Ij , Ik) ≥ sim(Ij , Ii) for all interests Ik in RIj .

Notice that this symmetry in link creation is not enforced by any way

underlining peer autonomy. Notice also, that the SimPeer() message is sent

only when pi updates its routing index. The only cost associated with this

modification is one extra message for each RIi update.

The idea behind this strategy is to exploit information discovered through

the rewiring procedure of a peer to update links of other peers. This in turn,

decreases the time required to create a clustered network. However, creating

clusters of similar peers with the SL strategy can result in highly coherent peer

neighborhoods, that in turn increase the probability to create isolated cliques

of similar peers (similarly to the case of % = 1).

4.4 Updating the long-range links

Long-range links in a SON are exploited to facilitate long jumps in the net-

work and allow reaching distant peer neighborhoods with small communication

overhead. The only requirement that needs to be met for the long-range links

of a peer pi is to point to peers that are not similar to pi. We present two

strategies that can be used by peers to obtain and maintain such links.

4.4.1 The Random Sampling strategy

According to the Random Sampling (RS) strategy, which is used in the ba-

sic protocol, a peer pi creates a FindDisPeers(ip(pi), Ii, τR) message and

forwards it in the overlay to search for peers with dissimilar interests. The

message is forwarded in the network using a random walk strategy until mes-

sage TTL τR reaches zero. Then, peer pj that received the message compares

its interest Ij against Ii contained in the message, if sim(Ij , Ii) < θ pj appends

its IP address ip(pj) and its interest Ij to the message and sends it back to pi.

21

Otherwise, pj sends an appropriate message to notify pi that they share simi-

lar interests. A peer pi that receives a FindDisPeers() message back checks

whether it already has a long-range link to a peer pk for which sim(Ij , Ik) ≥ θ.

If so, pi disregards the message and re-initiates the procedure, since it already

stores a short path towards the cluster that both pk and pj belong. Otherwise,

pi updates the long-range links of RIi with a pointer to pj .

4.4.2 The Biased Sampling strategy

The idea behind the Biased Sampling (BS) strategy is to use the rewiring

protocol and the corresponding rewiring messages to collect information about

non-similar peers. Under this strategy, a peer pi that receives a FindPeers()

message uses the information contained in it to update its long-range links

as follows. It randomly selects a peer pj contained in the message, for which

sim(Ii, Ij) < θ and sim(Ij , Ik) < θ holds, for all its long-range links pk. In

this way, the long-range links of pi contain (i) peers with interests dissimilar

to Ii, and (ii) peers with dissimilar interests between each other.

Notice that peers do not have to explicitly initiate a rewiring procedure

and the network is not loaded with extra messages. However, peers that belong

in the same neighborhood will tend to high overlap in their long-range links,

since they use the same messages to acquire these links. This biased sampling of

the network may reduce retrieval effectiveness, since queries will follow similar

routes and thus, leave parts of the network unexplored.

4.5 Combining all together

All the modifications to the basic rewiring protocol discussed above can be

combined to increase the retrieval effectiveness and reduce the message over-

head of any SON-based system. Summarising, the different rewiring strategies

presented earlier are the following: (i) GW, RW, GW+RW, or inf-GWRW, (ii)

% taking values in the interval [0, 1], (iii) SL or non-SL, and (iv) RS or BS.

Since the proposed strategies can be utilised independently of each other, this

22

System Parameter Symbol Value Routing Parameter Symbol Value

peers N 2,000 rewiring TTL τR 4
short-range links s 8 fixed forwarding TTL τf 6
long-range links l 4 broadcast TTL τb 2
similarity threshold θ 0.9 message fanout m 2

Table 1 Baseline parameter values.

creates a large space of possible combinations. Notice that different (combina-

tions of) rewiring strategies may emphasise recall, while others may be efficient

in terms of network traffic. In the next section, we show how each individual

strategy affects the performance of the basic protocol and also, identify inter-

esting strategy combinations that can further improve system performance.

5 Experimental Evaluation

In this section, we present our evaluation of the proposed rewiring protocols

using two real-world datasets with web and medical documents.

Datasets. The first dataset contains over 556,000 web documents from the

TREC-67 collection belonging in 100 categories, and has been previously used

to evaluate IR algorithms over distributed document collections (e.g., [30]).

The second dataset is a subset of the OHSUMED TREC8 document collection

that contains over 30,000 medical articles from 10 different categories. The

queries employed in the evaluation of both corpora are strong representatives

of document categories and are issued from random peers in the network.

Notice that this setting is a stress test for a SON, since we do not assume a

query distribution that follows peers’ interests.

Setup. We consider N loosely-connected peers, each of which contributes

documents in the network from a single category. At the bootstrapping, peers

are connected as described in Section 3.2.1. The base unit for time used in

the experiments is the period t. The start of the rewiring procedure for each

peer is randomly chosen from the interval [0, 4K · t] and its periodicity is

7 http://boston.lti.cs.cmu.edu/callan/Data/
8 http://trec.nist.gov/data/t9 filtering.html

23

randomly selected from a normal distribution of 2K · t, in the spirit of [23,20].

Therefore, each peer starts, and goes over again, independently the rewiring

process. We start recording the network activity at time 4K · t, when all peers

have initiated the rewiring procedure at least once. We used a network size

of 2,000 peers and our results were averaged over 25 runs (5 random initial

network topologies and 5 runs for each topology). The average number of

peers per class for the TREC-6 (resp. OHSUMED) corpus was 20 (resp. 200),

with standard deviation 4.42 (resp. 68.8). The simulator used to evaluate the

rewiring protocols and their modifications was implemented in C/C++, and

all experiments were run on a Linux machine. The baseline parameter values

used for the experiments are summarised in Table 1.

Determining the size of the routing index is an important task, since it af-

fects both retrieval effectiveness and network traffic. Small routing tables may

result in a poorly organised network (and thus low retrieval performance),

while large routing indexes cause high traffic at query time due to excessive

broadcasting. In this work, the size of the routing index is determined by

experimentation. A study that discusses how to set (some of) the parame-

ters of Table 1 can be found in [20]. More elaborate methods for finding the

appropriate size of the routing index is an important issue for future research.

Performance measures. As it is typical in the evaluation of P2P IR sys-

tems, performance is measured in terms of network traffic and IR effectiveness.

The network traffic is measured by recording the number of rewiring (resp.

search) messages sent over the network during rewiring (resp. querying). The

IR effectiveness is evaluated using recall, i.e. the number of relevant docu-

ments retrieved over the total number of relevant documents in the network.

Additionally, recall/(search) message is used to quantify a benefit/cost met-

ric. Notice that precision is always 100% in our approach, since only relevant

documents are retrieved. Our evaluation is goal-oriented: we are interested

24

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

uniform
zipf

normal

(a) Recall

 160

 180

 200

 220

 240

 260

 280

 4 6 8 10 12 14 16 18 20

#
 o

f
se

ar
ch

 m
es

sa
g
es

 p
er

 q
u
er

y

time units x 1000

uniform
zipf

normal

(b) Search messages per query

Fig. 5 Performance under different document distributions for the RW strategy (TREC-6).

in measuring the system performance directly, without resorting to clustering

quality measures (e.g., [5]) that might give misleading results [19]. One strat-

egy is better than another if it presents high recall for less network traffic.

Document Distribution. In the following, we examine the dependence of

the system performance on the distribution of the documents over the peers.

Thus, for a given rewiring strategy we measure both retrieval performance and

network traffic for three different real-life document distributions. Figure 5

illustrates retrieval performance, in terms of recall and search messages, as a

function of time for the RW strategy when the documents are distributed to

the peers (i) uniformly, (ii) using a heavy-tailed distribution (i.e., zipf) and (iii)

using the normal distribution. As shown in Figure 5(a), recall is marginally

affected by the document distribution. In terms of network traffic, Figure 5(b)

illustrates that the number of search messages is not affected by the document

distribution. In the rest of this section, we use the uniform distribution to

assign documents to peers.

5.1 Using different forwarding strategies

Figure 6(a) illustrates the retrieval effectiveness of the network as a function

of time for different forwarding strategies. At the beginning of the rewiring

procedure (t = 4K) peers are still randomly connected, the network is not

yet organised into clusters of peers with similar interests and the values for

25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

GW
RW

GW+RW
inf-GWRW

(a) Recall (TREC-6)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

GW RW GW+RW inf-GWRW

re
ca

ll

TREC-6
OHSUMED

(b) Recall for the 2 corpora

Fig. 6 Retrieval effectiveness for different forwarding strategies.

recall are low (around 35%). After some time, when all peers have executed

the rewiring protocol more than once (t = 8K), we can observe the effect

of the different forwarding strategies to peer organisation and consequently,

retrieval effectiveness. The GW strategy improves recall only by 3%, which can

be attributed to poor network organisation. The RW strategy demonstrated

the best retrieval performance overall achieving up to 12% better recall than

GW+RW and up to 8% better recall than inf-GWRW. In turn, the inf-GWRW

strategy outperforms GW+RW achieving up to 5% better recall.

The fact that the RW strategy results in the best retrieval performance and

also, converges faster towards a clustered organisation of peers is attributed

to the way it organises the network. The RW strategy explores the network

in a random fashion increasing the probability to discover peers with similar

interests, since peers are initially randomly connected. Even when similar peers

start to get organised into clusters, using the RW strategy proves efficient in

discovering isolated peers. The GW strategy explores peers’ neighborhoods

to discover peers with similar interests and yields poor results, since in an

unclustered (random) network peers are not always connected to other similar

peers. The GW+RW strategy performs a random selection of a forwarding

strategy at each invocation and is thus, limited by the bad performance of the

GW strategy. The inf-GWRW strategy initially performs at least as good as

26

the RW strategy. However, as the network converges towards a stable network,

peers tend to choose the gradient walk for the forwarding of the rewiring

messages reducing the probability to discover isolated peers.

Figure 6(b) shows the recall for TREC-6 and OHSUMED corpora when

the network is organised using different forwarding strategies. The values of

recall presented in the figure correspond to an organised network (t = 20K).

The RW strategy proves to be the best for both corpora in terms of recall.

The lower values of recall in the case of OHSUMED corpus are due to the

different number of peers per class. Specifically, there are 200 peers per class

when using the OHSUMED corpus, whereas there are 20 peers per class in the

case of TREC-6 corpus. This difference in the number of peers per class affects

retrieval performance in two ways: (i) The rewiring process tries to collect all

similar peers in the same neighborhood. Naturally, the smaller the number

of peers per class is, the easier and the faster all similar peers are clustered

together. When using the TREC-6 corpus the rewiring task is easier compared

to when the OHSUMED corpus is used. (ii) Recall depends (among others)

on the broadcasting TTL τb and on the number of short-range links s stored

by each peer. Even though all similar peers are gathered together in the same

neighborhood (no matter their number), there is the case that a query may

not reach all peers within the cluster if the diameter of the corresponding peer

neighborhood is bigger than sτb . We choose to use small values for s and τb,

since peer clusters are more cohesive and network traffic is kept low.

Figure 7 presents network traffic (rewiring and search messages) for the

four strategies over time. In terms of rewiring messages (Figure 7(a)), the

network initially presents a high message overhead, which is greatly reduced

(over 200%) for the RW, the GW+RW and the inf-GWRW strategies when the

network starts to get organised into clusters (t > 8K). Apparently, the GW

strategy does not manage to reach an effective peer organisation and peers

27

 0

 100

 200

 300

 400

 500

 600

 4 6 8 10 12 14 16 18 20

#
 o

f
re

w
ir

in
g
 m

es
sa

g
es

 p
er

 p
ee

r

time units x 1000

GW
RW

GW+RW
inf-GWRW

(a) Rewiring messages (TREC-6)

 160

 180

 200

 220

 240

 260

 280

 300

 4 6 8 10 12 14 16 18 20

#
 o

f
se

ar
ch

 m
es

sa
g
es

 p
er

 q
u
er

y

time units x 1000

GW
RW

GW+RW
inf-GWRW

(b) Search messages per query (TREC-6)

Fig. 7 Network traffic (rewiring and search messages) for different forwarding strategies.

continue executing the rewiring protocol to discover peers with similar inter-

ests, which leads to high message traffic. The other three strategies manage

to efficiently and quickly organise the network and maintain an effective peer

organisation at a small communication cost. All strategies need high number

of search messages (Figure 7(b)), when the network is not yet organised into

coherent neighborhoods (left-most points in the x-axis). However, this message

overhead is decreased (65% decrease) for RW, GW+RW and inf-GWRW as

the peers get organised into clusters with similar interests (right-most points

in the x-axis). The GW strategy does not improve network traffic, as it does

not manage to efficiently organise the network. Notice that the inf-GWRW

and GW+RW strategies performs slightly better in terms of overall network

traffic compared to the RW strategy.

5.2 Varying the refinement probability

Figure 8 illustrates retrieval effectiveness for various values of % as a function

of time for two forwarding strategies: (i) GW used in our basic protocol, and

(ii) RW exhibiting better retrieval performance than its competitors.

Figure 8(a) illustrates the way % affects retrieval performance when the

GW strategy is used. When the network is unorganised (t = 4K) the queries

cannot be routed efficiently resulting in low recall (approximately 35%). When

the network starts to organise (t = 6K), higher values of recall are achieved.

28

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

ρ=0.00
ρ=0.25
ρ=0.50
ρ=0.75
ρ=1.00

(a) Recall when using GW strategy

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

ρ=0.00
ρ=0.25
ρ=0.50
ρ=0.75
ρ=1.00

(b) Recall when using RW strategy

Fig. 8 Retrieval effectiveness for different values of % (TREC-6).

OHSUMED TREC-6
% recall search recall/msg recall search recall/msg

msgs (x10−3) msgs (x10−3)

0.00 0.53 282 1.88 0.69 172 4.01
0.25 0.68 282 2.41 0.68 142 4.79
0.50 0.55 232 2.37 0.72 140 5.14
0.75 0.54 238 2.31 0.66 141 4.68
1.00 0.58 261 2.22 0.67 140 4.79

Table 2 Performance for RW when the network is organised (t = 20K) for both corpora.

The retrieval performance of GW strategy improves 50% for % > 0, which

is attributed to the fact that more peers update their short-range links by

exploiting the rewiring messages.

Figure 8(b) presents recall over time when using the RW strategy. When % is

low (i.e., < 0.5), the network is clustered at a slow rate since more peers need to

initiate the rewiring process. As % increases, the network converges to organised

clusters of peers faster. When % is high (i.e., > 0.5), network organisation and

recall have converged to a stable state fast and remain unchanged, implying the

existence of isolated peers. The higher value of recall is achieved for % = 0.5,

i.e. when half of the forwarding peers use FindPeers() message to update

their short-range links.

In general, when % > 0 the network converges faster to a clustered peer

organisation by using less messages, and when % < 1 peers are discouraged

from creating isolated clusters. The ideal value for % is the one resulting in

connected clusters (i.e., there is a path connecting all similar peers), while

29

 140

 160

 180

 200

 220

 240

 260

 280

 300

 4 6 8 10 12 14 16 18 20

#
 o

f
se

ar
ch

 m
es

sa
g
es

 p
er

 q
u
er

y

time units x 1000

GW, ρ=0.00
GW, ρ=0.50
RW, ρ=0.00
RW, ρ=0.50

(a) Number of search messages per query
when using GW or RW strategy, for % = 0

and 0.5

 140

 160

 180

 200

 220

 240

 260

 280

 300

 4 6 8 10 12 14 16 18 20

#
 o

f
se

ar
ch

 m
es

sa
g
es

 p
er

 q
u
er

y

time units x 1000

non-SL, ρ=0.00
SL, ρ=0.00

non-SL, ρ=0.50
SL, ρ=0.50

(b) Number of search messages per query
when using RW strategy, for SL and non-SL

for % = 0 and 0.5

Fig. 9 Search cost for different rewiring strategies (TREC-6).

using minimum number of rewiring messages. Table 2 presents recall, search

cost and recall/message for the RW strategy, for varying % and over both cor-

pora in an organised network (t = 20K). When % = 0, RW presents the lowest

recall/message for both corpora. When % = 0.50, RW presents a good per-

formance for both corpora (lowest message traffic, highest and second highest

recall/message and a high recall value). The best value of % in terms of recall

is 0.25 when using OHSUMED corpus and 0.5 when using TREC-6 corpus.

The different effect of % on system performance across different corpora is

attributed to the different number of peers per class. Remember that increasing

the value of %, the probability of creating fully-connected peer clusters is also

increased. Given that the number of short-range links is much smaller than

the number of peers per class, in the case of OHSUMED corpus increasing the

value of % turns similar peers to create many isolated clusters thus, resulting

in bad retrieval performance. Conclusively, the higher the number of peers per

class is, the lower the value of % should be. In this way, more rewiring messages

may be generated, getting though an efficient peer clustering.

Figure 9(a) shows the number of messages per query for % = 0 (i.e., the

value used in the basic rewiring protocol) and 0.5 (i.e., the value that resulted

in the best retrieval performance) for the GW and RW strategies. When the

30

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

non-SL, ρ=0.00
SL, ρ=0.00

non-SL, ρ=0.50
SL, ρ=0.50

(a) Recall when using GW strategy

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

non-SL, ρ=0.00
SL, ρ=0.00

non-SL, ρ=0.50
SL, ρ=0.50

(b) Recall when using RW strategy

Fig. 10 Retrieval effectiveness for SL and non-SL corresponding to % = 0 and 0.5 for
different forwarding strategies (TREC-6).

network is not yet organised a higher number of search messages is needed.

This message overhead is decreased (65% decrease for RW) when % = 0.5 as

peers get organised. When % = 0, the network converges slowly to organised

peer neighborhoods and the message overhead decreases with a slower rate.

In terms of rewiring messages, the network initially presents a high mes-

sage overhead, which is greatly reduced (by a factor of 15) when the network

organises into coherent clusters (around moment 6K) for % > 0. When % = 0,

the network does not manage to quickly reach an effective peer organisation

and peers keep executing the rewiring protocol presenting higher message over-

head and slower decrease rate when compared to the case where % > 0. The

corresponding graphs are omitted due to space constraints.

5.3 Symmetric links

Figures 10(a) and (b) show the effect of symmetric versus non-symmetric links

in the retrieval performance over time for two different forwarding strategies

and for two different values of %. The data set used in this set of experiments

is TREC-6. The SL strategy, when used with the GW strategy, achieves bet-

ter retrieval performance (about 7%) compared to the basic rewiring protocol

(Figure 10(a)). The effect of the SL strategy on the retrieval performance is

small in the case of % = 0.50, since some of the links introduced by SL are

31

OHSUMED TREC-6
% non-SL SL non-SL SL

0.00 0.53 0.64 0.69 0.73
0.25 0.68 0.57 0.68 0.75
0.50 0.55 0.56 0.72 0.75
0.75 0.54 0.54 0.66 0.76
1.00 0.58 0.54 0.67 0.74

Table 3 Recall for RW when the network is organised (t = 20K) for both corpora.

also created due to % (forwarding peers have already updated their links to

point to previous message recipients and thus, SL has no additional effect on

clustering). The effect of creating symmetric links is higher in the case of the

RW strategy, since more similar peers per rewiring process are discovered (Fig-

ure 10(b)). The SL strategy improves retrieval performance by 10% for both

values of % and facilitates network converge towards organised peer clusters.

Notice that when using the SL strategy along with % = 0.5, the network or-

ganises faster than when using the SL strategy or % = 0.5 alone. Consequently,

creating symmetric links has a positive effect in retrieval performance.

Table 3 presents recall in an organised network (t = 20K) for both corpora

and for different values of %. Notice that when % > 0, SL does not always im-

prove recall on the OHSUMED corpus. When the OHSUMED corpus is used,

there are many peers per category and, even though similar peers are all clus-

tered together, the retrieval performance is also affected by other parameters,

as the number of short-range links s and the broadcasting TTL τb.

Figure 9(b) illustrates on the number of messages per query for the RW

strategy and for two values of % as a function of time. When % = 0, the

SL strategy decreases network traffic by 18% when compared to the case of

non-symmetric links between peers. The effect of the SL strategy in network

load is smaller when % = 0.50. By cross examining the results presented in

Figure 10(b) and 9(b), we conclude that the SL strategy manages to efficiently

organise peers and thus, improve retrieval effectiveness and search costs.

32

The SL strategy achieves better network organisation and thus, better

retrieval performance with low communication cost in terms of rewiring mes-

sages. Notice that this strategy was expected to impose extra message traffic,

due to the additional messages sent for supporting the symmetric links. In

fact, the SL strategy decreases message traffic, as it exploits existing traffic to

rewire the links of the peers. In terms of rewiring, our experiments show that

the SL strategy requires in general 10% less messages to organise the network

and also, results in a faster clustering when compared to the non-SL strategy.

5.4 Updating long-range links

The RS and BS strategies are used for updating the long-range links. Notice

that, we do not explore % or SL at the same time, since they do not affect the

long-range links. The retrieval performance of RS shows an average improve-

ment of about 5% over BS. In terms of message overhead, the RS strategy

imposes around 15% more rewiring messages as it uses extra message traffic

to discover peers with dissimilar interests and presents almost the same num-

ber of search messages per query compared to the BS strategy. From this set of

experiments, we conclude that the update strategy of the long-range links has

small impact on the performance, since both strategies perform similarly, with

RS presenting slightly better retrieval but also higher message traffic during

rewiring. The corresponding graphs are omitted due to space constraints.

5.5 Composite rewiring

In the following, we combine the best strategies identified above. The corre-

sponding strategy is called composite rewiring, and its performance is com-

pared against (i) the basic rewiring protocol presented in Section 3.2.2, (ii)

the clustering approach of Schmitz [23], modified for an IR task and using the

parameter values of Table 1 to obtain results comparable to our setting, and

(iii) a message-bounded flooding algorithm, i.e. a modified flooding strategy

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 4 6 8 10 12 14 16 18 20

re
ca

ll

time units x 1000

basic rewiring
composite rewiring

Schmitz
message-bounded flooding

(a) Recall

 140

 160

 180

 200

 220

 240

 260

 280

 300

 4 6 8 10 12 14 16 18 20

#
 o

f
se

ar
ch

 m
es

sa
g
es

 p
er

 q
u
er

y

time units x 1000

basic rewiring
composite rewiring

Schmitz
message-bounded flooding

(b) Number of search messages

Fig. 11 Comparison of different rewiring protocols (TREC-6).

that terminates when reaching a predetermined number of messages (in our

case the number of messages of the most efficient strategy). Message-bounded

flooding was implemented to serve as a baseline for the rest of the strategies.

Composite rewiring strategy uses the best strategies as identified in the

previous sections: (i) comparing the different forwarding strategies, the RW

strategy presented the best performance, (ii) experimenting with different val-

ues for %, % = 0.5 resulted in the best retrieval performance, (iii) showing

the effect of symmetric links, the SL strategy achieved better retrieval perfor-

mance with low communication cost, and (iv) experimenting on strategies for

updating the long-range links, the RS strategy performed slightly better than

its competitor. Therefore, composite rewiring consists of utilising the RW for-

warding strategy, % = 0.5, the SL strategy for creating short-range links, and

the RS strategy for updating long-range links. This combination is expected,

according to the results presented earlier, to perform well in terms of recall,

while imposing lower message costs than competitors.

Figures 11(a) and (b) illustrate the retrieval performance and communica-

tion load as a function of time for the different rewiring protocols. The data

set used in this set of experiments is TREC-6. In Figure 11(a), we observe that

composite rewiring achieves an 97% increase in recall when compared to the

basic rewiring, and about 21% increase when compared to the approach of [23].

34

In Figure 11(b) we observe that the composite strategy is the most efficient in

terms of message traffic (remember that flooding is message-bounded). Similar

results have been also obtained for the OHSUMED corpus.

5.6 Discussion

The different rewiring components (as identified in Section 4) are: (i) GW,

RW, GW+RW, or inf-GWRW strategy, (ii) % taking values in the interval

[0, 1], (iii) SL or non-SL strategy, and (iv) RS or BS strategy. There are many

choices to combine making up a range of possibilities worth exploring. Notice

that different combinations of rewiring strategies may emphasise recall and

behave slightly worse in terms of message costs and vice versa.

When message traffic is in question, the inf-GWRW strategy performs bet-

ter, while achieving reasonably high recall values. The RW strategy empha-

sises recall for a small increase in message traffic (Figure 6). Setting % = 0

leads to increased traffic and moderate retrieval performance, while a value of

0.25 ≤ % ≤ 0.75, achieves a good trade-off between traffic and retrieval effec-

tiveness (Figure 8). The SL strategy improves the overall system performance

(Figure 10), contrary to the updating strategy of long-range links that shows

no significant performance differences.

6 Conclusion

We presented a comprehensive study of both existing and innovative strate-

gies for rewiring protocols and showed how performance (in terms of retrieval

effectiveness and communication overhead) depends on each component of the

rewiring protocol. Subsequently, we have identified a combination of compo-

nents that outperforms existing rewiring protocols. We are currently working

on a rewiring protocol for highly dynamic settings, where peer churn and data

dynamicity follow appropriate models that exist in the literature. We study

the way churn affects the system performance and try to identify the rewiring

protocol that performs well under dynamic networks.

35

References

1. Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semanics
Through Gossiping. In: WWW (2003)

2. Garcia-Molina, H., Yang, B.: Efficient Search in Peer-to-Peer Networks. In: ICDCS
(2002)

3. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, chap. 8: Cluster Analysis.
Academic Press (2001)

4. Hidayanto, A., Bressan, S.: Towards a Society of Peers: Expert and Interest Groups in
Peer-to-Peer Systems. In: OTM Workshops (2007)

5. Hui, K., Lui, J., Yau, D.: Small-world Overlay P2P Networks: Construction, Manage-
ment and Handling of Dynamic Flash Crowds. Computer Networks (2006)

6. Jelasity, M., Montresor, A.: Epidemic-Style Proactive Aggregation in Large Overlay
Networks. In: ICDCS (2004)

7. Kantere, V., D. Tsoumakos, T.K.S.: Semantic Grouping of Social Networks in P2P
Database Settings. In: DEXA (2007)

8. Klampanos, I., Jose, J.: An Architecture for Information Retrieval over Semi-
Collaborating Peer-to-Peer Networks. In: ACM SAC (2004)

9. Koloniari, G., Pitoura, E.: Recall-based Cluster Reformulation by Selfish Peers. In:
NetDB (2008)

10. Li, M., Lee, W.C., Sivasubramaniam, A.: Semantic Small World: An Overlay Network
for Peer-to-Peer Search. In: ICNP (2004)

11. Loser, A., Tempich, C.: On Ranking Peers in Semantic Overlay Networks. In: WM
(2005)

12. Loser, A., Wolpers, M., Siberski, W., Nejdl, W.: Semantic Overlay Clusters within
Super-Peer Networks. In: DBISP2P (2003)

13. Lu, J., Callan, J.: Content-based Retrieval in Hybrid Peer-to-peer Networks. In: CIKM
(2003)

14. Merugu, S., Srinivasan, S., Zegura, E.: Adding Structure to Unstructured Peer-to-Peer
Networks: the Use of Small-World Graphs. Parallel and Distributed Computing 65(2),
142–153 (2005)

15. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer, M.,
Risch, T.: EDUTELLA: a P2P Networking Infrastructure Based on RDF. In: WWW
(2002)

16. Ng, C.H., Sia, K.C., Chang, C.H.: Advanced Peer Clustering and Firework Query Model
in the Peer-to-Peer Network. In: WWW (2002)

17. Parreira, J.X., Michel, S., Weikum, G.: p2pDating: Real Life Inspired Semantic Overlay
Networks for Web Search. Information Processing and Management (2007)

18. Penzo, W., Lodi, S., Mandreoli, F., Martoglia, R., Sassatelli, S.: Semantic Peer, Here
are the Neighbors you Want! In: EDBT (2008)

19. Raftopoulou, P., Petrakis, E.: A Measure for Cluster Cohesion in Semantic Overlay
Networks. In: LSDS-IR (2008)

20. Raftopoulou, P., Petrakis, E.: iCluster: a Self-Organising Overlay Network for P2P
Information Retrieval. In: ECIR (2008)

21. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A Scalable Content-
Addressable Network. In: ACM SIGCOMM (2001)

22. Sacha, J., Dowling, J., Cunningham, R., Meier, R.: Discovery of Stable Peers in a Self-
Organising Peer-to-Peer Gradient Topology. In: DAIS (2006)

23. Schmitz, C.: Self-Organization of a Small World by Topic. In: P2PKM (2004)
24. Schmitz, C., Loser, A.: How to Model Semantic Peer-to-Peer Overlays? In: P2PIR

(2006)
25. Spripanidkulchai, K., Maggs, B., Zhang, H.: Efficient Content Location using Interest-

Based Locality in Peer-to-Peer Systems. In: INFOCOM (2003)
26. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F.,

Balakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Appli-
cations. IEEE/ACM Transactions on Networking 11(1) (2003)

27. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. In: SIGCOMM (2003)

36

28. Triantafillou, P., Xiruhaki, C., Koubarakis, M., Ntarmos, N.: Towards High Performance
Peer-to-Peer Content and Resource Sharing Systems. In: CIDR (2003)

29. Voulgaris, S., van Steen, M., Iwanicki, K.: Proactive Gossip-based Management of Se-
mantic Overlay Networks. Concurrency and Computation: Practice and Experience
19(17) (2007)

30. Xu, J., Croft, W.: Cluster-Based Language Models for Distributed Retrieval. In: ACM
SIGIR (1999)

