
Information Alert in Distributed Digital
Libraries: The Models, Languages, and

Architecture of DIAS�

M. Koubarakis, T. Koutris, C. Tryfonopoulos, and P. Raftopoulou

Dept. of Electronic and Computer Engineering
Technical University of Crete
73100 Chania, Crete, Greece

{manolis,koutris,trifon,rautop,}@intelligence.tuc.gr
www.intelligence.tuc.gr/˜manolis

Abstract. This paper presents DIAS, a distributed alert service for dig-
ital libraries, currently under development in project DIET. We first
discuss the models and languages for expressing user profiles and notifi-
cations. Then we present the data structures, algorithms and protocols
that underly the peer-to-peer agent architecture of DIAS.

1 Introduction

Users of modern digital libraries can keep themselves up-to-date by searching
and browsing their favourite collections, or more conveniently by resorting to an
alert service. Recently, the participants of project HERMES [15] have argued
very convincingly that an alert service which integrates information from a wide
variety of information providers can be indispensable to users. It relieves them
from the tedious and cumbersome task of searching and browsing, or even from
subscribing to individual alert services such as Springer Link Alert1 or Elsevier
Contents Direct2.

In this paper, we discuss the models, languages and architecture of DIAS,
a Distributed Information Alert System currently under development in the
context of the European project DIET [24,27,18]. DIAS adopts the basic ideas
of project HERMES [15] and extends them in various interesting ways.

Our main technical contributions can be summarized as follows. First, we
introduce the peer-to-peer (P2P) agent architecture of DIAS which has been
inspired by the event dissemination system SIENA [6]. We also discuss the re-
quirements imposed by this architecture on the data models and languages to
� This work was carried out as part of the DIET (Decentralised Information Eco-

systems Technologies) project (IST-1999-10088), within the Universal Information
Ecosystems initiative of the Information Society Technology Programme of the Eu-
ropean Union.

1 http://link.springer.de/alert
2 http://www.elsevier.nl

M. Agosti and C. Thanos (Eds.): ECDL 2002, LNCS 2458, pp. 527–542, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

528 M. Koubarakis et al.

be used for specifying user profiles/queries and notifications.3 Then we develop
formally the data models WP,AWP and AWPS, and their corresponding lan-
guages for specifying queries and notifications. Data model WP is only briefly
presented and more details can be found in [19,20]. WP is based on free text
and its query language is based on the boolean model with proximity operators.
The concepts of WP extend the traditional concept of proximity in IR [2,8,9]
in a significant way, and utilize it in a query language targeted at information
alert for distributed digital libraries. Data model AWP is based on attributes or
fields with finite-length strings as values. Its query language is an extension of
the query language of data model WP. Our work on AWP complements recent
proposals for querying textual information in distributed event-based systems
[6,4] by using linguistically motivated concepts such as word and not arbitrary
strings. This makes AWP very appropriate in information alert systems for
digital libraries4. Finally, the model AWPS extends AWP by introducing a
“similarity” operator in the style of modern IR, based on the vector space model
[2]. The novelty of our work in this area is the move to query languages much
more expressive than the one used in the information dissemination system SIFT
[29] where documents and queries are represented by free text. The similarity
concept of AWPS is essentially the similarity concept pioneered by IR systems
[2], database systems with IR influences (e.g., WHIRL [11]) and more recently by
the XML query language ELIXIR [10]. We note that both WHIRL and ELIXIR
target information retrieval and integration applications, and pay no attention
to information dissemination and the concepts/functionality needed in such ap-
plications. The first presentation of model AWPS is the one given in this paper
and [21].

In the second part of our paper, we present the detailed protocols and al-
gorithms of our architecture and discuss its implementation in the context of
project DIET [24,27,18]. Contrary to project HERMES [15], we develop a dis-
tributed information alert service from scratch based on the ideas of SIENA [6]
and do not rely on any pre-existing message-oriented middleware.

The rest of the paper is organised as follows. Section 2 introduces the DIAS
architecture, and discusses the requirements for data models and languages to
be used in this context. Section 3 presents data model WP and its semantics.
Then Sections 4 and 5 build on this foundation and develops the same machin-
ery for data models AWP and AWPS. Section 6 discusses some interesting
details of the DIAS architecture and implementation. Finally, Section 7 gives
our conclusions and discusses future work.

3 In this paper, the terms query and profile will be used interchangeably. We are in an
information alert setting where a profile is simply a long-standing query.

4 Also, for other commercial systems where similar models are supported already for
retrieval.

Information Alert in Digital Libraries 529

end-
agent

 middle
agent

middle
agent

middle
agent middle

agent

resource
agent

resource
agent

notification

notification

profile

notification

profile
notification

end-
agent

information
provider

information
provider

Fig. 1. The architecture of DIAS

2 DIAS: Architecture and Requirements

A high level view of DIAS is shown in Figure 1. Resource agents integrate a
number of information providers to produce streams of notifications that are send
to somemiddle-agent(s). Resource agents are similar in functionality to observers
as defined in project HERMES [15]. Users utilize their personal agents to post
profiles to some middle-agent(s). The P2P network of middle-agents is the “glue”
that makes sure that published notifications arrive at interested subscribers. To
achieve this, middle-agents forward posted profiles to other middle-agents using
an appropriate P2P protocol. In this way, matching of a profile with a notification
can take place at a middle-agent that is as close as possible to the origin of the
incoming notification. Profile forwarding can be done in a sophisticated way to
minimize network traffic e.g., no profiles that are less general than one that has
already been processed are actually forwarded.

Most of the concepts of the architecture sketched above have been explicit
(or sometimes implicit) in the agent literature for some time (especially, the lit-
erature on KQML and subsequent multi-agent systems based on it [16]. Unfortu-
nately the emphasis in most of these systems is on a single central middle-agent,
making the issues that would arise in a distributed setting difficult to appreciate.
In our opinion, the best presentation of these concepts available in the literature
can be found in [6] where the distributed event dissemination system SIENA is
presented.5 Some core ideas of SIENA have been adopted by DIAS as we will
explain in Section 6.
5 SIENA does not use terminology from the area of agent systems but the connection

is obvious.

530 M. Koubarakis et al.

From the beginning, the design of DIAS has proceeded in a principled and
formal way. With this motivation and the above architecture in mind, we now
proceed to discuss our requirements for models and languages to be used in this
setting:

1. Expressivity. The language for notifications and user profiles must be rich
enough to satisfy the demands of users and capabilities of information
providers.

2. Formality. The syntax and semantics of the proposed models and languages
must be defined formally.

3. Computational efficiency. The following problems should be defined formally
and algorithms must be provided for their efficient solution:
a) The satisfiability problem: Deciding whether a profile can be satisfied by
any incoming notification at all. This functionality is necessary at each
middle-agent.

b) The satisfaction (or matching) problem: Deciding whether a notification
satisfies (or matches) a profile.

c) The filtering problem: Given a database of profiles db and a notification
n, find all profiles q ∈ db that match n. This functionality is very crucial
at each middle-agent and it is based on the availability of algorithms for
the satisfaction problem. We expect deployed information alert systems
to handle hundreds of thousands or millions of profiles.

d) The entailment or subsumption problem: Deciding whether a profile is
more or less “general” than another. This functionality is crucial if we
want to minimize profile forwarding as sketched above.

Previous research has shown that the above formal perspective is shared
by other researchers in the area of information dissemination.6 Various papers
proposing sophisticated filtering algorithms in the area of event dissemination
have defined the syntax and semantics of their languages carefully [1,25,14]. The
developers of the distributed event dissemination system SIENA in particular
have carefully defined the syntax and semantics of their language for events and
profiles, and have formalised the notions of satisfaction and entailment (called
“covers” in [6]). The same has been done for a much more expressive language
in [4] where only satisfaction and filtering have been considered. To the best
of our knowledge, no work has been done so far on addressing the satisfiability
problem.

In the rest of this paper, we concentrate on information alert in distributed
digital libraries and define the models WP,AWP and AWPS that are suitable
for this job. Then we discuss the architecture of DIAS and show how the theo-
retical concepts discussed above become crucial for its efficient implementation.

6 However, to the best of our knowledge, no one has applied this formal perspective
in a distributed digital library context.

Information Alert in Digital Libraries 531

3 Text Values and Word Patterns

The model WP assumes that textual information is in the form of free text and
can be queried by word patterns (hence the acronym for the model).

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of a (finite or infinite)
set of words called the vocabulary and denoted by V.
Definition 1. A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.
In other words, a text value s is a finite sequence of words from the assumed
vocabulary and s(i) gives the i-th element of s. Text values can be used to rep-
resent finite-length strings consisting of words separated by blanks. The length
of a text value s (i.e., its number of words) will be denoted by |s|.

We now give the definition of word-pattern. The definition is given recursively
in three stages.
Definition 2. Let V be a vocabulary. A proximity-free word pattern over vo-
cabulary V is an expression generated by the grammar

WP → w | ¬WP | WP ∧WP | WP ∨WP | (WP)

where terminal w represents a word of V. A proximity-free word pattern will be
called positive if it does not contain the negation operator.

Example 1. In all the examples of this paper, our vocabulary will be the vo-
cabulary of the English language and will be denoted by E . The following are
proximity-free word patterns that might appear in queries of a user of an infor-
mation alert system interested in articles on constraints:

constraint ∧ programming ∧ ¬e-commerce,
constraint ∧ (optimisation ∨ programming)

We now introduce a new class of word patterns that allows us to capture the
concepts of order and distance between words in a text document. We will assume
the existence of a set of (distance) intervals I defined as follows:

I = {[l, u] : l, u ∈ N, l ≥ 0 and l ≤ u} ∪ {[l,∞) : l ∈ N and l ≥ 0}

The symbols ∈ and ⊆ will be used to denote membership and inclusion in an
interval as usual.

The following definition uses intervals to impose lower and upper bounds on
distances between word patterns.
Definition 3. Let V be a vocabulary. A proximity word pattern over vocabulary
V is an expression wp1 ≺i1 wp2 ≺i2 · · · ≺in−1 wpn where wp1, wp2, . . . , wpn are
positive proximity-free word patterns over V and i1, i2, . . . , in−1 are intervals
from the set I. The symbols ≺i where i ∈ I are called proximity operators.
The number of proximity-free word patterns in a proximity word pattern (i.e., n
above) is called its size.

532 M. Koubarakis et al.

Example 2. The following are proximity word patterns:
constraint ≺[0,0] programming, artificial ≺[0,0] neural ≺[0,0] networks,
algorithms ≺[0,3] (satisfaction ∨ filtering), induced ≺[0,∞) constraints

repairing ≺[0,10] querying ≺[0,10] (inconsistent ∧ databases)

The proximity word pattern wp1 ≺[l,u] wp2 stands for “word pattern wp1 is
before wp2 and is separated by wp2 by at least l and at most u words”. In the
above example algorithms ≺[0,3] satisfaction denotes that the word “satisfac-
tion” appears after word “algorithms” and at a distance of at least 0 and at
most 3 words. The word pattern constraint ≺[0,0] programming denotes that
the word “constraint” appears exactly before word “programming” so this is a
way to encode the string “constraint programming”. We can also have arbitrarily
long sequences of proximity operators with similar meaning (see the examples
above). Note that proximity-free subformulas in proximity word-patterns can
be more complex than just simple words (but negation is not allowed; this re-
striction will be explained below). This makes proximity-word patterns a very
expressive notation.

Definition 4. Let V be a vocabulary. A word pattern over vocabulary V is an
expression generated by the grammar

WP → PFWP | PWP | WP ∧WP | WP ∨WP | (WP)

where non-terminals PFWP and PWP represent proximity-free and proximity
word patterns respectively. A word pattern will be called positive if its proximity-
free subformulas are positive.

Example 3. The following are word patterns of the most general kind we allow:
applications ∧ (constraint ≺[0,0] programming) ∧ ¬e-commerce,
algorithms ∧ (complexity ≺[0,10] (satisfaction ∧ filtering)),

learning ∧ ((neural ≺[0,0] networks) ∨ (neuromorphic ≺[0,0] systems))

It is not difficult to see now how to define what it means for a text value s
to satisfy a word pattern wp (denoted by s |= wp). The exact definition is given
in [19,20,21].

Example 4. Let s be the following text value:
“Interaction of constraint programming and

local search for optimisation problems”
The text value s satisfies the following word patterns:

local ≺[0,0] search ≺[0,5] optimisation
(global ∨ local) ≺[0,5] search ≺[1,1] optimisation,

(constraint ∧ programming) ≺[0,10] optimisation ≺[0,0] problems

The text value s also satisfies word pattern:
optimisation ∧ (constraint ≺[0,0] programming)

Finally we define entailment (conversely: subsumption) of two word patterns.

Information Alert in Digital Libraries 533

Definition 5. Let wp1 and wp2 be word patterns. We will say that wp1 entails
wp2 (denoted by wp1 |= wp2) iff for every text value s such that s |= wp1, we
have s |= wp2. If wp1 |= wp2, we also say that wp2 subsumes wp1.

Example 5. The word pattern constraint∧programming entails programming.
The word pattern learning ∧ (artificial ≺[0,0] neural ≺[0,0] networks) entails
the word pattern learning ∧ (neural ≺[0,0] networks) ∧ artificial. The word
pattern algorithms subsumes the word pattern algorithms ∧ satisfaction ∧
filtering. Similarly, satisfaction ∨ filtering subsumes filtering.

4 An Attribute-Based Data Model and Query Language

Now that we have studied the data model WP,we are ready to define our second
data model and query language. Data model AWP is based on attributes or fields
with finite-length strings as values (in the acronym AWP, the letter A stands
for “attribute”). Strings will be understood as sequences of words as formalized
by the model WP presented earlier. Attributes can be used to encode textual
information in a notification (e.g., author, title, abstract of a paper and so on).
AWP is somewhat restrictive since it offers a flat view of a notification, but it
will suffice in many cases that arise in digital library environments. A similarly
flat view of a notification has successfully been adopted in project HERMES
[15].

We start our formal development by defining the concepts of notification
schema and notification. Throughout the rest of this paper we assume the ex-
istence of a countably infinite set of attributes U called the attribute universe.

Definition 6. A notification schema N is a pair (A,V) where A is a subset of
the attribute universe U and V is a vocabulary.

Example 6. An example of a notification schema for information alert in a digital
library is

N = ({AUTHOR, TITLE, ABSTRACT}, E).

Definition 7. Let N = (A,V) be a notification schema. A notification n over
schema N is a set of attribute-value pairs (A, s) where A ∈ A, s is a text value
over V, and there is at most one pair (A, s) for each attribute A ∈ A.

Example 7. The following is a notification over the schema of Example 6:

{ (AUTHOR, “John Brown”),
(TITLE, “Interaction of constraint programming and

local search for optimisation problems”),
(ABSTRACT, “In this paper we show that

adapting constraint propagation...”) }

534 M. Koubarakis et al.

Notice that only textual information is allowed in notifications as defined in this
paper. In the DIAS implementation to be discussed in Section 6, we eventually
plan to support other kinds of information (e.g., numerical, dates, etc.). However,
at the moment, we concentrate only on textual information.

The syntax of our query language is given by the following recursive defini-
tion.
Definition 8. Let N = (A,V) be a notification schema. A query over N is a
formula in any of the following forms:

1. A � wp where A ∈ A and wp is a positive word pattern over V. The formula
A � wp can be read as “A contains word pattern wp”.

2. A = s where A ∈ A and s is a text value over V.
3. ¬φ where φ is a query containing no proximity word patterns.
4. φ1 ∨ φ2 where φ1 and φ2 are queries.
5. φ1 ∧ φ2 where φ1 and φ2 are queries.

The queries in the first two of the above cases are called atomic.

Example 8. The following are queries over the schema of Example 6:
AUTHOR � (John ≺[0,2] Smith),
¬AUTHOR = “John Smith”∧

(TITLE � (optimisation ∧ (constraint ≺[0,2] programming)))

Let us now define the semantics of the above query language in our informa-
tion alert setting. We start by defining when a notification satisfies a query.

Definition 9. Let N be a notification schema, n a notification over N and φ
a query over N . The concept of notification n satisfying query φ (denoted by
n |= φ) is defined as follows:

1. If φ is of the form A � wp then n |= φ iff there exists a pair (A, s) ∈ n and
s |= wp.

2. If φ is of the form A = s then n |= φ iff there exists a pair (A, s) ∈ n.
3. If φ is of the form ¬φ1 then n |= φ iff n �|= φ1.
4. If φ is of the form φ1 ∧ φ2 then n |= φ iff n |= φ1 and n |= φ2.
5. If φ is of the form φ1 ∨ φ2 then n |= φ iff n |= φ1 or n |= φ2.

Example 9. The first query of Example 8 is not satisfied by the notification of
Example 7 while the second one is satisfied.

Finally we define entailment (conversely: subsumption) of two queries.
Definition 10. Let φ1 and φ2 be queries over schema N . Then φ1 entails φ2
(denoted by φ1 |= φ2) iff every notification n over N that satisfies φ1 also satisfies
φ2. If φ1 entails φ2 then we also say that φ2 subsumes φ1.

Example 10. The query
(AUTHOR � John ≺[0,1] Brown) ∧ (TITLE � constraint ∧ programming)
entails (equivalently: is subsumed by) TITLE � programming.

Information Alert in Digital Libraries 535

5 Extending AWP with Similarity

Let us now define our third data model AWPS and its query language. AWPS
extends AWP with the concept of similarity between two text values (the letter
S stands for similarity). The idea here is to have a “soft” alternative to the “hard”
operator �. This operator is very useful for queries such as “I am interested in
papers written by John Brown” which can be written in AWP as

AUTHOR � (John ≺[0,0] Brown)

but it might not be very useful for queries “I am interested in papers about the
use of local search techniques for the problem of test pattern optimisation”.

The desired functionality can be achieved by resorting to an important tool
of modern IR: the weight of a word as defined in the Vector Space Model (VSM)
[2,23,28]. In VSM, documents (text values in our terminology) are conceptually
represented as vectors. If our vocabulary consists of n distinct words then a text
value s is represented as an n-dimensional vector of the form (ω1, . . . , ωn) where
ωi is the weight of the i-th word (the weight assigned to a non-existent word is 0).
With a good weighting scheme, the VSM representation of a document can be a
surprisingly good model of its semantic content in the sense that “similar” doc-
uments have very close semantic content. This has been recently demonstrated
by many successful IR systems [2] or database systems adopting ideas from IR
(see for example, WHIRL [11]).7

In VSM, the weight of a word is computed using the heuristic of assign-
ing higher weights to words that are frequent in a document and infrequent in
the collection of documents available. This heuristic is made concrete using the
concepts of word frequency and the inverse document frequency defined below.

Definition 11. Let wi be a word in document dj of a collection C. The term
frequency of wi in dj (denoted by tfij) is equal to the number of occurrences of
word wi in dj. The document frequency of word wi in the collection C (denoted
by dfi) is equal to the number of documents in C that contain wi. The inverse
document frequency of wi is then given by idfi = 1

dfi
. Finally, the number tfij ·

idfi will be called the weight of word wi in document dj and will be denoted by
ωij.

At this point we should stress that the concept of inverse document frequency
assumes that there is a collection of documents which is used in the calculation.
In our alert scenarios we assume that for each attribute A there is a collection of
text values CA that is used for calculating the idf values to be used in similarity
computations involving attribute A (the details are given below). CA can be a
collection of recently processed text values as suggested in [29,15].
7 Sometimes in IR systems (or systems adopting ideas from IR) word stems, produced

by some stemming algorithm [26], are forming the vocabulary instead of words.
Additionally, stopwords (e.g., “the”) are eliminated from the vocabulary. These im-
portant details have no consequence for the theoretical results of this paper, but it
should be understood that our current implementation of the ideas of this section
utilizes these standard techniques.

536 M. Koubarakis et al.

We are now ready to define the main new concept in AWPS, the similarity
of two text values. The similarity of two text values sq and sd is defined as the
cosine of the angle formed by their corresponding vectors:8

sim(sq, sd) =
sq · sd

‖sq‖ · ‖sd‖ =
∑N

i=1 wqi
· wdi√∑N

i=1 w
2
qi

· ∑N
i=1 w

2
di

(1)

By this definition, similarity values are real numbers in the interval [0, 1].
Let us now proceed to give the syntax of the query language for AWPS.

Since AWPS extends AWP, a query in the new model is given by Definition 8
with one more case for atomic queries:

– A ∼k s where A ∈ A, s is a text value over V and k is a real number in the
interval [0, 1].

Example 11. The following are some queries in AWPS using the schema of
Example 7:

TITLE ∼0.6 “Local search techniques for constraint optimisation problems”,
(AUTHOR � (John ≺[0,2] Smith))∧

(TITLE ∼0.9 “Temporal constraint programming”),
T ITLE ∼0.9 “Large Scale Telecommunication Network Optimisation”

We now give the semantics of our query language, by defining when a doc-
ument satisfies a query. Naturally, the definition of satisfaction in AWPS is as
in Definition 9 with one additional case for the similarity operator:

– If φ is of the form A ∼k sq then d |= φ iff there exists a pair (A, sd) ∈ d and
sim(sq, sd) ≥ k.

The reader should notice that the number k in a similarity predicate A ∼k s
gives a relevance threshold that candidate text values s should exceed in order to
satisfy the predicate. This notion of relevance threshold was first proposed in an
information alert setting by [17] and later on adopted by [29]. The reader is asked
to contrast this situation with the typical information retrieval setting where a
ranked list of documents is returned as an answer to a user query. This is not
a relevant scenario in an information alert system because very few documents
(or even a single one) enter the system at a time, and need to be forwarded to
interested users (see the architecture sketched in Figure 1).

A low similarity threshold in a predicate A ∼k s might result in many irrel-
evant documents satisfying a query, whereas a high similarity threshold would
result in very few achieving satisfaction (or even no documents at all). In DIAS,
8 The IR literature gives us several very closely related ways to define the notions of

weight and similarity [2,23,28]. All of these weighting schemes come by the name of
tf · idf weighting schemes. Generally a weighting scheme is called tf · idf whenever
it uses word frequency in a monotonically increasing way, and document frequency
in a monotonically decreasing way.

Information Alert in Digital Libraries 537

users could start with a certain relevance threshold and then update it using rel-
evance feedback techniques to achieve a better satisfaction of their information
needs. Recent techniques from adaptive IR can be utilised here [7]. This update
functionality has not been implemented in the current version of DIAS.

Example 12. The first query of Example 11 is likely to be satisfied by the doc-
ument of Example 7 (of course, we cannot say for sure until we know the idf
factors so that the exact weights can be calculated). The second query is not
satisfied, since the author specified in the query does not match the document’s
author. Moreover the third query is unlikely to be satisfied since the only com-
mon word between the query and Example 7 is the word “optimisation”.

6 The Current DIAS Implementation: Details

In the previous sections of this paper, we have defined appropriate models and
languages for expressing profiles and notifications in DIAS. For efficiency reasons,
the current implementation of DIAS supports only profiles of the form ψ ∧ σ
where

– ψ is a conjunction of atomic queries of AWP of the form A = s or A � wp
where every proximity formula in the word pattern wp contains only words
as subformulas.

– σ is a conjunction of atomic similarity queries as defined in the model
AWPS.

The notion of notification supported currently in DIAS is as defined in Section
4.

The reasons for the above choices in the current DIAS implementation are
as follows. In [13], we give precise bounds for the computational complexity of
all problems defined in Section 2 for model AWP. Satisfaction can always be
decided in polynomial time. For the complete query language of AWP, the satis-
fiability problem is NP-complete and the entailment problem is coNP-complete.
Polynomial cases of these two problems have been identified and the most use-
ful one is the conjunctive case adopted in DIAS. This theoretical analysis will
appear in a forthcoming paper.

In the rest of this section we discuss the data structures, algorithms and
protocols that regulate how DIAS agents work together so that all produced
information is delivered to interested consumers. This is achieved with the com-
bination of the following techniques: sophisticated forwarding of the AWP part
of each subscription by utilizing appropriate networking algorithms [12] and a
poset data structure, and very fast indexing techniques for detecting the set
of profiles that match an incoming notification. Preliminary evaluation of these
techniques by us (and previously by SIENA researchers [6,5]) lead us to believe
that DIAS will be a robust and scalable system.

538 M. Koubarakis et al.

Forwarding the AWP Part of a Subscription. DIAS follows the lead of SIENA
[6,5] and forwards subscriptions using the reverse path forwarding algorithm of
[12]. In DIAS this algorithm works as follows. Let us assume that at one end
of the information chain, a personal agent A posts a profile p ≡ ψ ∧ σ to some
middle-agent M (ψ and σ are as defined at the beginning of this section). Then,
the AWP part ψ of p is propagated through the middle-agent network so that
a spanning tree that connects M to all other middle-agents is formed. More
precisely, a middle-agentM forwards an AWP profile ψ only if ψ is coming from
a neighbor middle-agent N that is on the shortest path connecting the source of
ψ with middle-agent M . If this condition is satisfied then M can forward ψ to
all its neighbors except the one that originally forwarded ψ to M .

The above algorithm requires that every middle-agent M knows the identity
of the neighbor middle-agent that is the next node on the shortest path from M
to every other middle-agent in the network. To keep track of this information, ev-
ery middle-agent maintains an appropriate routing table that associates a source
middle-agent to a neighbormiddle-agent and a distance which reflects the latency
between nodes in the network. This routing table can be constructed using tradi-
tional techniques such as the asynchronous distributed version of Bellman-Ford’s
all-pairs shortest-path algorithm [3].

The Profile Poset. At each middle-agent, the propagation of a newly arrived
AWP profile ψ is implemented by treating ψ as a subscription to neighboring
middle-agents. This propagation step is optimized (network traffic is minimized)
by allowing it only towards those agents that have not received already a more
general profile φ (i.e., ψ |= φ). To achieve this, each agent maintains a partially
ordered set (called the profile poset) that keeps track of the subsumption relations
among the AWP profiles posted to it.9 This is possible because the relation of
subsumption in AWP (see Section 4) is reflexive, anti-symmetric and transitive
i.e., a (weak) partial order [22].

As AWP profiles arrive at a middle-agent from neighboring middle-agents,
they are inserted into the local profile poset. If for two profiles ψ and φ of a
given poset P , ψ |= φ, then φ will be an ancestor of ψ (and conversely ψ will
be a descendant of φ) in P . Although the relations ancestor/descendant are
transitive relations, the poset maintains only immediate ancestor/descendant
relations. Figure 2 shows an example of a profile poset.

To facilitate the routing of subscriptions and notifications, every profile ψ
in a poset is associated with two sets: a set of subscribers that contains the
identities of other middle-agents that have subscribed with profile ψ, and a set
of forwardees that contains the addresses of neighbor middle-agents where profile
ψ has been forwarded.

The insertion of an AWP profile ψ in the poset of a middle-agent M is
performed according to the following rules:

9 See [22] for posets and related definitions.

Information Alert in Digital Libraries 539

(AUTHOR John Smith)
(TITLE programming)

(AUTHOR John Smith)
(TITLE constraint programming)

(ABSTRACT experimental results)

TITLE constraint programming

[0,0]

[0,0](AUTHOR John Brown)
(TITLE constraint programming)

[0,1]

(AUTHOR John Brown)
(TITLE (constraint programming) optimization)

[0,1]

[0,0]

Fig. 2. A profile poset

1. If a profile subscription φ that subsumes ψ is already present in the poset,
and has the source S of the profile among its subscribers, the insertion ends
without updating the poset structure.

2. If ψ exists in the poset, and S is not among its subscribers,M simply inserts
the current subscriber S in the set of subscribers of ψ.

3. If ψ does not exist in the poset, the two (possibly empty) sets f and f ′,
representing the immediate ancestors and the immediate descendants of ψ,
are computed, and ψ is inserted as a new node between f and f ′.

In the latter two cases, M also removes S from all the subscriptions in the
poset that are subsumed by ψ. If this process leaves a subscription with an empty
set of subscribers then this subscription is removed from the poset.

After the poset is updated, M forwards ψ to all its neighbors except to
those that M has already forwarded a profile that subsumes ψ (and of course
except the neighbor that originally sent this profile to M). The complexity of
this algorithm for inserting a profile in a poset is polynomial (the exact bound is
given in [13]). Note that M could also forward the similarity part σ of a profile
if an appropriate entailment relation had been defined for model AWPS. This
is currently an open problem for us and similarity queries σ participate only in
filtering notifications as explained below.

540 M. Koubarakis et al.

Processing Notifications. If a resource agent R publishes a notification n that
matches an existing subscription ψ, n is routed towards the middle-agent M
where ψ originated by following the reverse path defined by the earlier propaga-
tion of ψ. The poset structure discussed above can be used to solve this filtering
problem and this is what it is done in SIENA [6]. We have not been satisfied by
the performance of such poset structures for filtering and we follow a different
approach. We use specialized filtering algorithms that utilize indices over the
database of profiles at each middle-agent. When an incoming notification n ar-
rives, the index is used to retrieve all profiles satisfying n and their subscribers
rapidly. Scalable filtering algorithms of this kind that can deal with millions of
AWP profiles are discussed in [13] and will appear in a forthcoming paper.

7 Conclusions

In this paper we presented DIAS, a distributed alert service for digital libraries,
currently under development in project DIET. We first discussed the models and
languages for expressing user profiles and notifications culminating in the devel-
opment of model AWPS. Then we presented the data structures, algorithms
and protocols that underlie the P2P agent architecture of DIAS. AWPS is an
expressive formal model especially targeted for information alert in distributed
digital libraries. However, it is fair to say that in our quest for formality and
expressive power, we have overlooked the issue of adaptation of user profiles and
how this would affect the design and algorithms of DIAS. In this area there is a
lot of interesting IR research (e.g., see the work in the TREC filtering track10)
but it is an open problem how such ideas can be used in distributed information
alert systems such as DIAS.

Our current research concentrates on evaluating analytically and experimen-
tally the current DIAS architecture and comparing it with other alternatives
inspired by current research in P2P systems. In this way, we expect that the
informal claims we made in Section 6 about scalability and robustness of DIAS
will be substantiated.

Acknowledgements. This work was carried out as part of the DIET (Decen-
tralised Information Ecosystems Technologies) project (IST-1999-10088), within
the Universal Information Ecosystems initiative of the Information Society Tech-
nology Programme of the European Union. We would like to thank the other
participants in the DIET project, from Departmento de Teoria de Senal y Co-
municaciones, Universidad Carlos III de Madrid, the Intelligent Systems Lab-
oratory, BTexact Technologies and the Intelligent and Simulation Systems De-
partment, DFKI, for their comments and contributions. We would also like to
thank the reviewers for their very constructive criticisms.

10 http://trec.nist.gov

Information Alert in Digital Libraries 541

References

1. M. Altinel and M.J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proceedings of the 26th VLDB Conference, 2000.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

3. D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.
4. A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Efficent filtering in

publish-subscribe systems using binary decision diagrams. In Proceedings of the
23rd International Conference on Software Engineering, Toronto, Ontario, Canada,
2001.

5. A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area
Networks. PhD thesis, Politecnico di Milano Italy, 1998.

6. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and expres-
siveness in an internet-scale event notification service. In Proceedings of the 19th
ACM Symposium on Principles of Distributed Computing (PODC’2000), pages
219–227, 2000.

7. U. Cetintemel, M.J. Franklin, and C.L. Giles. Self-adaptive user profiles for large-
scale data delivery. In ICDE, pages 622–633, 2000.

8. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Boolean Query Mapping
across Heterogeneous Information Sources. IEEE Transactions on Knowledge and
Data Engineering, 8(4):515–521, 1996.

9. C.-C. K. Chang, H. Garcia-Molina, and A. Paepcke. Predicate Rewriting for Trans-
lating Boolean Queries in a Heterogeneous Information System. ACM Transactions
on Information Systems, 17(1):1–39, 1999.

10. T. T. Chinenyanga and N. Kushmerick. Expressive retrieval from XML documents.
In Proceedings of SIGIR’01, September 2001.

11. William W. Cohen. WHIRL: A word-based information representation language.
Artificial Intelligence, 118(1-2):163–196, 2000.

12. Y. Dalal and R. Metcalfe. Reverse Path Forwarding of Broadcast Packets. Com-
munications of the ACM, 21(12):1040–1048, 1978.

13. M. Koubarakis et. al. Project DIET Deliverable 7 (Information Brokering), De-
cember 2001.

14. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha.
Filtering algorithms and implementation for very fast publish/subscribe systems.
In Proceedings of ACM SIGMOD-2001, 2001.

15. D. Faensen, L. Faulstich, H. Schweppe, A. Hinze, and A. Steidinger. Hermes – A
Notification Service for Digital Libraries. In Proceedings of the Joint ACM/IEEE
Conference on Digital Libraries (JCDL’01), Roanoke, Virginia, USA, 2001.

16. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Commu-
nication Language. In N. Adam, B. Bhargava, and Y. Yesha, editors, Proceedings
of the 3rd International Conference on Information and Knowledge Management
(CIKM’94), pages 456–463, Gaithersburg, MD, USA, 1994. ACM Press.

17. P.W. Foltz and S.T. Dumais. Personalised information delivery: An analysis of
information filtering methods. Communications of the ACM, 35(12):29–38, 1992.

18. A. Galardo-Antolin, A. Navia-Vasquez, H.Y. Molina-Bulla, A.B. Rodriquez-
Gonzalez, F.J. Valvarde-Albacete, A.R. Figueiras-Vidal, T. Koutris, A. Xiruhaki,
and M. Koubarakis. I-Gaia: an Information Processing Layer for the DIET Plat-
form . In Proceedings of the 1st International Joint Conference on Autonomous
Agents & Multiagent Systems (AAMAS 2002), September 15–19 2002.

542 M. Koubarakis et al.

19. M. Koubarakis. Boolean Queries with Proximity Operators for Information Dis-
semination. Proceedings of the workshop on Foundations of Models and Languages
for Information Integration (FMII-2001), Viterbo, Italy , 16-18 September, 2001.
In LNCS (forthcoming).

20. M. Koubarakis. Textual Information Dissemination in Distributed Event-Based
Systems. Proceedings of the International Workshop on Distributed Event-Based
systems (DEBS’02), July 2-3, 2002, Vienna, Austria.

21. P. Raftopoulou M. Koubarakis, C. Tryfonopoulos and T. Koutris. Data models
and languages for agent-based textual information dissemination. In Proceedings
of the 6th International Workshop on Cooperative Information Agents(CIA2002),
Madrid, Lecture Notes in Computer Science. Springer, 2002. forthcoming.

22. Z. Manna and R. Waldinger. The Logical Basis of Computer Programming, vol-
ume 1. Addison Wesley, 1985.

23. C.D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, Massachusetts, 1999.

24. P. Marrow, M. Koubarakis, R.H. van Lengen, F. Valverde-Albacete, E. Bonsma,
J. Cid-Suerio, A.R. Figueiras-Vidal, A. Gallardo-Antolin, C. Hoile, T. Koutris,
H. Molina-Bulla, A. Navia-Vazquez, P. Raftopoulou, N. Skarmeas, C. Tryfonopou-
los, F. Wang, and C. Xiruhaki. Agents in Decentralised Information Ecosystems:
The DIET Approach. In M. Schroeder and K. Stathis, editors, Proceedings of the
AISB’01 Symposium on Information Agents for Electronic Commerce, AISB’01
Convention, pages 109–117, University of York, United Kingdom, March 2001.

25. J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient matching for web-based
publish/subscribe systems. In Proceedings of COOPIS-2000, 2000.

26. M.F. Porter. An Algorithm for Suffix Striping. Program, 14(3):130–137, 1980.
27. F. Wang. Self-organising Communities Formed by Middle Agents. In Proceedings

of the 1st International Joint Conference on Autonomous Agents & Multiagent
Systems (AAMAS 2002), September 15–19 2002.

28. I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan Kauffman Publishing, San Francisco,
2nd edition, 1999.

29. T.W. Yan and H. Garcia-Molina. The SIFT information dissemination system.
ACM Transactions on Database Systems, 24(4):529–565, 1999.

	Introduction
	DIAS: Architecture and Requirements
	Text Values and Word Patterns
	An Attribute-Based Data Model and Query Language
	Extending $cal AWP$ with Similarity
	The Current DIAS Implementation: Details
	Conclusions

