
August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

FAIR RESOURCE ALLOCATION IN A SIMPLE MULTI-AGENT

SETTING: SEARCH ALGORITHMS AND EXPERIMENTAL

EVALUATION

PARASKEVI RAFTOPOULOU, MANOLIS KOUBARAKIS

Department of Electronic and Computer Engineering, Technical University of Crete,

Kounoupidiana, Chania, 73100, Greece

{paraskevi,manolis}@intelligence.tuc.gr

KOSTAS STERGIOU

Department of Information and Communication Systems Engineering, Aegean University,

Karlovasi, Samos, 83200, Greece

Konsterg@aegean.gr

PETER TRIANTAFILLOU

Department of Computer Engineering and Informatics, University of Patras,

Rio, Patra, 26500, Greece

peter@ceid.upatras.gr

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

We study the problem of fair resource allocation in a simple cooperative multi-agent

setting where we have k agents and a set of n objects to be allocated to those agents.
Each object is associated with a weight represented by a positive integer or real number.
We would like to allocate all objects to the agents so that each object is allocated to only

one agent and the weight is distributed fairly. We adopt the fairness index popularized
by the networking community as our measure of fairness, and study centralized algo-

rithms for fair resource allocation. Based on the relationship between our problem and

number partitioning, we devise a greedy algorithm for fair resource allocation that runs

in polynomial time but is not guaranteed to find the optimal solution, and a complete
anytime algorithm that finds the optimal solution but runs in exponential time. Then we

study the phase transition behavior of the complete algorithm. Finally, we demonstrate
that the greedy algorithm actually performs very well and returns almost perfectly fair

allocations.

Keywords: Fairness; resource allocation; number partitioning; phase transitions.

1. Introduction

We study the problem of fair resource allocation in a simple co-operative multi-

agent setting where we have k agents and a set of n objects to be allocated to

those agents. Each object is associated with a weight represented by a positive in-

1

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

2 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

teger or real number. We would like to allocate all objects to the agents so that

each object is allocated to only one agent and the weight is distributed fairly. We

adopt the fairness index popularized by the networking community as our measure

of fairness,10 and study algorithms for fair resource allocation in this multi-agent

setting. Our algorithms are centralized and can be run by any of the participating

agents once needed information is revealed to them by all other agents. It turns out

that the problem of fair resource allocation in our setting is very close to number

partitioning, one of the six basic NP-complete problems in the complexity book by

Garey and Johnson.4 Based on the relationship between these two problems, we

devise a greedy algorithm that runs in polynomial time but is not guaranteed to

find the optimal solution, and a complete anytime algorithm that finds the optimal

solution but runs in exponential time. Both algorithms are based on number par-

titioning algorithms originally proposed by Korf.13 We study the phase transition

behavior of these algorithms much like Gent and Walsh did for the number parti-

tioning problem.7 Finally, we demonstrate experimentally that the greedy algorithm

actually performs very well and returns almost perfectly fair allocations.

Fair resource allocation has previously received attention in a variety of settings.

Starting with Lorenz in 1905, economists have studied fair allocation policies that

simultaneously give a high amount of resources to every agent, trying to achieve fair-

ness on average as well as for each individual agent.14 Lorenz proposed an intuitive

way of understanding fairness of an allocation policy: in a 2-dimensional space plot

the point that represents the amount of resources allocated to the poorest agent,

then the point that represents the sum of the resources allocated to the two poor-

est agents and so on, and consider the curve obtained by connecting these points.

If we have a perfectly fair allocation then this curve is a straight line, otherwise

the curve is convex and lies under the straight line. An allocation whose curve lies

over the curve of another allocation is fairer, i.e., it has a “more equal” distribution

of resources. Lorenz’s intuition found its formalization in the concept of majoriza-

tion proposed by Hardy, Littlewood and Polya in the 1920s to study properties of

inequalities.9,15 Achieving fairness by majorization has recently been considered in

a number of applications e.g., network routing and load balancing.12,1

The work reported in this paper has been inspired by recent research on load

balancing in peer-to-peer and grid systems.17 In the case of peer-to-peer (P2P) net-

works such as Napster or Gnutella, we have k system nodes (peers) and n resources

i.e., files to be downloaded. Each file can be associated with a number in [0, 1] called

popularity that measures the probability that this document will be accessed or the

number of hits this document will receive in some given time period that the P2P

system is in operation.19 In the former case p(d) can be a real number in the interval

[0, 1] while in the latter case p(d) can be a natural number. The load of a peer i

can then be defined to be the sum of the popularities of the documents the peer

stores. P2P protocols should then distribute load fairly to peers; such protocols are

presented in (Ref. 19). In the case of grid systems, the resources are tasks to be

executed and each task needs certain units of processing power given by a positive

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 3

integer.16

Fair resource allocation can also be studied by taking into account non-

cooperative scenarios with selfish agents, markets etc.3 We have not considered

any of the arising issues in the work presented in this paper.

The remainder of this paper is organized as follows. In Section 2 we define the

fairness index and discuss why it is a good measure of fairness. In Section 3 we state

the fair resource allocation problem formally and Section 4 presents algorithms for

its solution. Section 5 presents our experimental results. Finally, Section 6 concludes

the paper.

2. Basic Concepts

Allocations of resources will be represented by vectors of real numbers. An alloca-

tion will be called perfect if its coordinates are all equal. The fairness index of an

allocation is a global metric originally proposed in (Ref. 10) to quantify how far an

allocation is from the perfect.

Definition 2.1. Let A be a non-negative real number representing an amount of

some given resource R in terms of units of some measure. Let x = (x1, . . . , xk)

be a vector of reals representing an allocation of amount A to k agents such that

agent i is allocated xi units of R and A =
∑k

i=1
xi. Then, the fairness index of this

allocation is given by a function F : Rk
+ → (0, 1] that is defined as follows:

F(x) =
(
∑k

i=1
xi)

2

k
∑k

i=1
x2

i

. (1)

The fairness index measures “how equal” the amounts xi are in the allocation x.

If all agents get the same amount of resources (i.e., all xi’s are equal) then the fair-

ness index is 1, implying that the allocation is 100% fair. As the disparity increases

and the vector x becomes more “skewed”, the fairness index value decreases giving

a notion of how far this allocation is from the perfect. For a non-perfect allocation,

there are cases where the fairness index would give us the fraction of favored agents.

Example 2.1. Suppose one is asked to distribute 20 Euros among 100 persons.

Let us consider the following two ways to distribute the money. In allocation x we

give 20 cents to each of the 100 persons. The fairness index of this allocation is

obviously 1, thus x is perfect. Let y be a second allocation where depending upon

some criterion, we choose 10 persons and give them 2 Euros each. The other 90

persons get no money. The fairness index of this allocation is 0.10. This can be

interpreted as saying that this allocation is only 10% fair because only 10% of the

agents are treated equally.

The fairness index has the following intuitive properties:10

(i) It is population size independent i.e., it can be applied to any number of agents.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

4 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

(ii) It is independent of scale and metric i.e., the unit of resource measurement does

not matter. More formally, the fairness index of allocation x and cx (where

c > 0) is the same.

(iii) It is bounded i.e., its values are in the interval (0, 1]. Thus, fairness can be

expressed as a percentage, and this helps in the intuitive understanding of the

differences among allocations.

(iv) It is continuous so that any slight change in xi changes the index.

(v) If we take an amount of resource δx > 0 from one agent i with resource xi

and give it to another agent j with resource xj , then the fairness index of the

resulting allocation:

(a) increases (the new allocation is better) if δx < |xi − xj |.

(b) decreases (the new allocation is worse) if δx > |xi − xj |.

(c) remains the same if δx = |xi − xj |.

This property is very intuitive. It is known as the principle of transfers and it

is also discussed in (Ref. 15) and attributed to Dalton (Ref. 2).

(vi) Let x = (x1, . . . , xn) be an allocation of some resource to n agents. If each agent

is given the same amount of additional resource c, then F(x+ c) ≥ F(x) where

x + c denotes the allocation (x1 + c, . . . , xn + c).

(vii) If only one agent is given additional resources, then the fairness index is de-

creased if this agent is a favored one. The fairness index is increased otherwise.

(viii) The fairness index has a bell-shaped behavior curve with respect to the alloca-

tion to each individual agent. Thus, the fairness index firstly increases when an

individual’s allocation increases. This behavior happens up to a critical point.

From this point on, any additional increase to the individual allocation results

in a decrease to the fairness index.

(ix) If there is no limit on allocations, then the worst case of fairness can be near

zero. By putting upper and lower bounds on allocations, the fairness index can

guarantee a minimum level of fairness.

Let us now consider each allocation x to give us the values of some random

variable which takes each of its values with equal probability. We can now see

that F(x) is a better measure of fairness than variance because variance is not

independent of scale. The fairness index of x can also be shown to be equal to

F(x) =
m2

1

m2

= 1

1+Cov2 where m1 and m2 are the first and second moment, and Cov

the coefficient of variation of x.10 This shows that the fairness index is a better

measure of fairness than the coefficient of variation. The advantage of the fairness

index is that it is bounded in the interval (0, 1] while the coefficient of variation is

not. This makes fairness index a more intuitive measure of fairness. Notice also the

inverse relation between the fairness index and the coefficient of variation; when we

have a perfect allocation the coefficient of variation is zero. If we increase unfairness

then the coefficient of variation increases and the fairness index decreases.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 5

3. The Fair Resource Allocation Problem

Let us now define the fair resource allocation problem in our setting. We assume

that we have a set of k agents and a set of n objects. Each object is associated with

a weight represented by a positive integer.a We would like to allocate the objects

to the agents so that each object is allocated to only one agent and the weight

is distributed fairly. Using the definition of fairness index, this resource allocation

problem can be defined formally as follows.

Definition 3.1. [The Fair Resource Allocation Problem or FRA] Let O be a set

of n objects with weights given by a function w : O → N. Let k be the number of

agents. We would like to find a partition of O into subsets O1, . . . , Ok so that the

function

F(
∑

o∈O1

w(o), . . . ,
∑

o∈Ok

w(o)) =
(
∑k

i=1

∑
o∈Oi

w(o))2

k
∑k

i=1
(
∑

o∈Oi
w(o))2

(2)

is maximized where F is the fairness index function of Definition 2.1.

We now give an example of the FRA problem. In the rest of the paper we

intentionally blur the difference between the set of objects O and its image under

function w (a set of integers).

Example 3.1. Let us consider an instance of FRA with k = 4 and O =

{10, 9, 8, 7, 6, 4, 2}. The solution for this problem is the partition of O into the fol-

lowing subsets:

O1 = {10}, O2 = {9, 2}, O3 = {8, 4}, O4 = {7, 6}

The resulting fairness index is equal to 0.99064.

FRA is very close to the number partitioning problem (NUMP), one of the

six basic NP-complete problems in the complexity book by Garey and Johnson.4

NUMP can be stated as follows.11

Definition 3.2. [The k-way Number Partitioning Problem or NUMP] Given a

finite bag (multi-set) S of positive integers, partition S into k bags A1, . . . , Ak ⊆ S

so as to minimize the following difference:

∆(A1, . . . , Ak) = max
i

∑

x∈Ai

x − min
i

∑

x∈Ai

x. (3)

Thus, both FRA and NUMP are NP-complete combinatorial optimization prob-

lems obtained from the same decision problem but differing in their objective func-

tions. It is easy to see that a solution to FRA is always a solution to NUMP but

not vice versa as the following example demonstrates. Notice also that FRA and

NUMP are equivalent when k = 2 or k = 3.

aNone of our results changes if we assume that weights are real numbers.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

6 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

Example 3.2. We consider the instance of FRA from Example 3.1 as an instance

of number partitioning. Now there are two solutions that minimize ∆(O1, . . . , O4):

O1 = {10}, O2 = {9, 2}, O3 = {8, 4}, O4 = {7, 6} and

O1 = {10}, O2 = {8, 2}, O3 = {9, 4}, O4 = {7, 6}

Notice that only the first solution is a solution to FRA because for the second one

the fairness index is 0.98327.

4. Algorithms For FRA

We now turn to algorithms for FRA. Our greedy algorithm GFRA is based on the

greedy algorithm for the number partitioning problem.(Ref. 13) We first sort the

objects in O in decreasing order of weight. Then we always give the next unallocated

object to the agent with the smallest weight so far, until all objects have been

allocated. This algorithm is illustrated by the following example.

Example 4.1. Let us consider an instance of FRA with k = 2 and O =

{8, 7, 6, 5, 4}. GFRA would proceed as follows.

Remaining Objects Subset O1 Subset O2

{8, 7, 6, 5, 4} - -

{7, 6, 5, 4} {8} {}

{6, 5, 4} {8} {7}

{5, 4} {8} {7, 6}

{4} {8, 5} {7, 6}

- {8, 5, 4} {7, 6}

The greedy algorithm always makes the choice that looks best at the moment:

whenever a new object is processed, the highest increase to fairness index is achieved

if the object is allocated to one of the agents with the smallest weight. GFRA needs

O(n) time to allocate n objects to k agents and O(nkm) space where m is the length

of the maximum object weight in binary.

Let us now turn to complete algorithms for solving FRA. To find an optimal

solution to the FRA problem one can use the obvious exhaustive algorithm: con-

sider all possible allocations of the n objects to the k agents and finally return the

allocation that maximizes the fairness index. The running time of this algorithm is

O(kn), with k ≥ 2, since it amounts to searching a tree with branching factor k and

depth n.

The algorithm CGFRA we present makes the greedy algorithm GFRA com-

plete and it is inspired by the complete algorithm solving the number partitioning

problem.13 This algorithm is a substantial improvement over the exhaustive algo-

rithm sketched above and works as follows. First, we sort the objects in decreasing

order of weight, as we have done for GFRA. Then, we consider each of the n objects

in turn and give it to each of the k different agents, generating a k-ary search tree

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 7

which is searched depth-first. The search is ordered and the greedy heuristic is used

whenever we expand a node: the leftmost branch emanating from this node gives

the next object to the agent with the smallest current weight, the next branch gives

it to the agent with the next smallest weight, etc. Thus, the first solution found is

always the solution returned by GFRA. Furthermore, the search tree is pruned in

the following ways:

(i) We never give an object to more than one agent with the same current weight.

In this way, we avoid generating allocations that are essentially permutations of

each other. Therefore, we reduce the search space and produce only O(kn/k!)

distinct k-way allocations of the n objects.

(ii) The last object is only allocated to the agent with the smallest current weight,

as this is the best we can do.

(iii) At each node of the search tree, we use branch-and-bound, and maintain the

greatest fairness index F(y) found so far for a complete allocation y. Given the

agent with the largest current weight in a partial allocation, the best we can do

is to bring the weight of each of the remaining agents up to the largest current

value. To see if this is possible, we sum the current weight of all agents except

the one with the largest weight and we add to this number, the sum of the

weights of the remaining unallocated objects (denoted by r), to calculate the

weight that the k − 1 agents have to share. Thus, assuming that numbers on

allocation vector z are in non-increasing order, the quotient

A =

∑k
i=2

xi + r

k − 1
(4)

represents the average weight that can be allocated to any of the k − 1 agents

except the one with the largest current weight.

Formally, let x = (x1, . . . , xk) be the current resource allocation to the k

agents, where x1 ≥ x2 ≥ . . . ≥ xk. If x1 − A > 0 then we consider allocation

z = (x1, A, . . . , A), i.e., the first agent is given the largest current weight and

the remaining k − 1 agents are given the average weight A. The fairness index

for this allocation is the following:

F(z) =
(x1 + (k − 1)A)2

k(x2
1 + (k − 1)A2)

. (5)

If F(z) is greater than the maximum fairness index value achieved so far

(denoted by F(y)), then this is the best complete allocation we could achieve.

Of course, there is no guarantee that we could actually achieve this allocation,

since it represents a perfect solution to a k − 1-way FRA problem, but it gives

us an upper bound.

Thus, if the fairness index F(z) computed above is smaller than the best

fairness index found so far, we can prune this branch since we cannot improve

the existing partial allocation.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

8 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

(iv) Once an optimal allocation is found, the algorithm is terminated. We compute

the optimal solution to the problem as follows. A perfect allocation has a fairness

index value equal to 1 whenever the sum of the weights of all the objects is

divisible by k. If the sum of the weights of all objects is not divisible by the

number of agents, we take the integer part of the division, calling it q, and the

remainder, calling it ρ. Then, the highest optimal fairness index value we can

achieve is:

[(k − ρ)q + ρ(q + 1)]2

k[(k − ρ)q2 + ρ(q + 1)2]
(6)

In summary, CGFRA searches a tree depth-first, from left to right, requiring

exponential time and O(nkm) space, where m is the length of the maximum weight

in binary. The first allocation found is the one computed by GFRA, and the worst

case is to generate at most O(kn/k!) allocations.

CGFRA is an anytime algorithm.13 Thus, it may improve the quality of the

solution returned, if it is allowed to run for enough time. The anytime feature of

our algorithm is especially useful in our application domain, since a agent in a P2P

system running the complete algorithm presented above can always decide whether

to run it to completion based on some criterion (e.g., fairness achieved by that time

or resources available to the agent, etc.). When the algorithm is terminated, the

agent can perform the required reorganization of the system based on this possibly

imperfect allocation.19

5. Experimental Results

In this section, we present the results of the evaluation carried out for both GFRA

and CGFRA.

0

0.2

0.4

0.6

0.8

1

0
 0.5
 1
 1.5
 2

constrainedness parameter

pr
ob

ab
ili

ty
 a

 p
er

fe
ct

pa

rt
iti

on
 e

xi
st

s

n=6

n=12

n=18

n=24

Fig. 1. Probability of a perfect partition existing against κ.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 9

Since the FRA problem is an NP-complete optimization problem, the first ques-

tion we raise is whether it exhibits the typical easy-hard pattern. We will use the

constrainedness parameter κ,5 to identify whether CGFRA exhibits a phase transi-

tion, and if so, to identify the phase transition region. Luckily enough the analysis

of (Ref. 7) regarding κ for NUMP holds as is for FRA. Firstly, the expected num-

ber of solutions in an instance of the decision problem version of NUMP i.e., the

expected number of perfect partitions is computed. If we consider finding a perfect

2-partition for a bag of n numbers drawn uniformly and at random from (0, l] then

the constrainedness of an ensemble of NUMP problems is

κ =
log2(l)

n
. (7)

The same formula for κ can be used in our case and we expect that a phase

transition will occur when κ ≈ 1. If κ < 1, problems are under-constrained and typ-

ically soluble. When κ > 1, problems are over-constrained and typically insoluble.

Fig. 1 confirms our intuition. We plot the probability that a perfect partition exists

against κ for a set of n objects allocated to k = 2 agents. The weights of the objects

are integers distributed uniformly at random in the interval (0, l], for log2 l from 0

to 2n. 1000 problem instances were generated for each value of l and n.

In Fig. 2, the average number of nodes searched by CGFRA is plotted against

the constrainedness parameter κ. The y-axis is in logarithmic scale. The easy-hard

phase transition pattern typical of optimization problems is easily identifiable. At

the beginning, where κ is small, problems are in the soluble phase and are, on

average, easy. Problem hardness increases as we approach the phase boundary. As

expected, problems appear to remain uniformly hard in the insoluble phase away

from the phase boundary.

1

10

100

1000

10000

100000

1000000

0
 0.5
 1
 1.5
 2

constrainedness parameter

nu
m

 o
f g

en
er

at
ed

 n
od

es

 n=6

n=12

n=18

n=24

Fig. 2. Average number of nodes searched by CGFRA against κ.

Additionally, the transition sharpens as n increases. Thus, when n = 6 the phase

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

10 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

boundary is identifiable with difficulty. As n increases, the transition becomes more

obvious, and it is finally very steep for n = 24.

In Fig. 2, it is clear that in the easy phase the number of nodes generated by

CGFRA is comparable as n increases. For example, when κ < 0.4 CGFRA gener-

ates approximately 7 nodes for allocating 6 objects, while for allocating 24 objects

it generates approximately 30 nodes. However, when κ > 1 CGFRA generates ap-

proximately 10 nodes to allocate 6 objects, and 330000 nodes to allocate 24 objects.

The number of nodes generated by CGFRA against γ (a rescaled version of

κ) is also plotted and the same easy-hard pattern reported for NUMP7 have been

seen. The case k > 2 has also been considered and gave similar results to the ones

reported for NUMP.6 These results are omitted due to space considerations.

Finally, we have investigated the behaviour of CGFRA in the case that the

generated weights follow the Zipf distribution. This is particularly relevant for ap-

plications such P2P systems where popularities of requested documents have been

observed to follow the Zipf distribution.18 In this case, the phase transition be-

haviour of CGFRA remains the same but the number of generated nodes is sur-

prisingly less than in the uniform distribution case (see Fig. 3 for n = 12). This

discovery makes us agree with the result that instances of NUMP obeying Benford’s

law are much easier to partition than those drawn uniformly.8

1

10

100

1000

0
 0.5
 1
 1.5
 2

constrainedness parameter

nu
m

 o
f g

en
er

at
ed

 n
od

es

 uniform

zipf

Fig. 3. Average number of nodes searched against κ.

Let us now give a flavor of the actual time needed to solve some of the FRA

instances generated above. The algorithms were implemented in C and we run our

experiments on a Pentium 4 with CPU at 1.6 GHz and with 1 GByte of main

memory running Linux. For all instances of the FRA problem, GFRA returns with

the greedy solution in less than 1 msec. In the easy phase of CGFRA, for example

when κ ' 0.3, FRA is solved in time less than 1 msec for every value of n. In the

hard region the time increases substantially. For example, when κ ' 1.65 CGFRA

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 11

needs on average less than 1 msec when n = 6, 1 msec when n = 12, 50 msecs

when n = 18, and 1.6 secs when n = 24 to find the optimal solution. Finally, if we

consider a larger instance e.g., finding the optimal 20-partition of n = 100 objects,

CGFRA needs 31 hours.

Let us now study the values of the fairness index achieved by GFRA and

CGFRA. Fig. 4 gives us an interesting picture. We plot the difference in the fairness

index achieved by GFRA and CGFRA, for allocating n objects to k = 2 agents,

with n varying from 6 to 24, against the constraindness parameter κ. 1000 problem

instances were generated for each value of κ. We observe that the difference in the

values of fairness index achieved is one order of magnitude less in the soluble phase

compared to the difference in the insoluble phase. Note that the difference in the

values of fairness index achieved between the allocations returned by both algo-

rithms is very very small, i.e. always less than 0.000023, meaning that the solution

returned by GFRA is always very near to the solution returned by CGFRA.

0

0.000005

0.00001

0.000015

0.00002

0
 0.5
 1
 1.5
 2

constrainedness parameter

di
fe

re
nc

e
in

 fa
ir

ne
ss

 in
de

x
 n=6

n=12

n=18

n=24

Fig. 4. Difference in the fairness index achieved against κ.

6. Conclusions

We studied the FRA problem and evaluated two algorithms for its solution so that

larger instances of FRA could be solved quickly. We are currently exploring the

following avenues for future work. It would be interesting to consider local search

algorithms for this problem. We would also like to consider distributed algorithms

that have only local information about the state of the multi-agent system and see

how quickly they can converge to fair allocations. It would also be interesting to

consider this problem in a non-cooperative setting and investigate how techniques

from mechanism design3 would be useful for its solution. These studies will be useful

in the application domains of P2P and grid systems.

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

12 Paraskevi Raftopoulou, Manolis Koubarakis, Kostas Stergiou & Peter Triantafillou

Acknowledgments

We would like to thank Toby Walsh and Ian Gent for discussions regarding number

partitioning and Richard Korf for allowing us to have his code for solving number

partitioning problems.

References

1. R. Bhargava, A. Goel, and A. Meyerson. Using approximate majorization to charac-
terize protocol fairness. SIGMETRICS ’01, pages 330–331, June 2001.

2. H. Dalton. The measurement of the inequality of incomes. Economics Journal, 30:348–
361, 1920.

3. R. K. Dash, D. C. Parkes, and N. R. Jennings. Computational Mechanism Design: A
Call to Arms. IEEE Intelligent Systems, 18(6):40–47, 2003.

4. M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the Theory of
NP-Completeness. Mathematical Sciences. W. H. Freeman and Company, New York,
1979.

5. I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search. In
AAAI/IAAI, volume 1, pages 246–252, 1996.

6. I. P. Gent and T. Walsh. Phase transitions and annealed theories: Number partitioning
as a case study. In Proceedings of ECAI-96, pages 170–174, 1996.

7. I. P. Gent and T. Walsh. Analysis of heuristic for number partitioning. Computational
Intelligence, 14(3):430–451, August 1998.

8. I.P. Gent and T. Walsh. Benford’s law. Technical Report APES-25-2001, APES Re-
search Group, January 2001.

9. G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University Press,
London and New York, 1st ed., 2nd ed. edition, 1934,1952.

10. R. K. Jain, D.-M. W. Chiu, and W. R. Have. A quantitive measure of fairness and
discrimination for resource allocation in shared computer systems. Technical Report
DEC-TR-301, Digital Institution Corporation, Hudson, MA 01749, September 26
1984.

11. N. Karmarkar and N.R. Karp. The differencing method of set partitioning. Techni-
cal Report UCB/CSD 82/113, Computer Science Division, University of California,
Berkley, California, U.S.A., 1982.

12. J. M. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and load balancing.
Journal of Computer and System Sciences, 63(1):2–20, 2001.

13. R. E. Korf. A complete anytime algorithm for number partitioning. Artificial Intelli-
gence, 106:181–203, August 1998.

14. M. O. Lorenz. Methods of measuring concentrations of wealth. Journal of the Amer-
ican Statistical Association, 9:209–219, 1905.

15. A. W. Marshall and I. Olkin. Inequalities: theory of majorization and its applications,
volume 143 of Mathematics in Science and Engineering. Academic Press, 1979.

16. A. Montresor, H. Meling, and O. Babaoglu. Messor: Load balancing through a swarm
of intelligent agents. In G. Moro and M. Koubarakis, editors, Proceedings of the
AAMAS 2002 First International Workshop on Agents and Peer-to-Peer Computing
(AP2PC), number 2530 in LNCS, pages 125–137, Bologna, Italy, July 2002. Springer.

17. P. Raftopoulou, M. Koubarakis, and M. Magiridou. Fair Resource Allocation in P2P
Systems: Theoretical and Experimental Results. Technical Report TUC-ISL-03-2003,
Technical University of Crete, Chania, Greece, September 2003.

18. K. Sripanidkulchai. The Popularity of Gnutella Queries and its Implications on Scal-

August 30, 2005 12:47 WSPC/INSTRUCTION FILE raftopoulou-ijait

Fair Resource Allocation in a Simple Multi-Agent Setting: Search Algorithms and Experimental Evaluation 13

ability. http://www-2.cs.cmu.edu/kunwadee/ research/p2p/gnutella.html, 2001.
19. P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Towards high-

performance peer-to-peer content and resource sharing systems. In Proceedings of
the First Biennial Conference on Innovative Data Systems Research (CIDR 2003),
January 2003.

