
Efficient Agent-Based Dissemination of Textual
Information

Manolis Koubarakis, Theodoros Koutris,
Paraskevi Raftopoulou, Christos Tryfonopoulos

Dept. of Electronic and Computer Engineering
Technical University of Crete

University Campus - Kounoupidiana
73100 Chania, Crete, Greece

Tel: +30-821-037222
Fax: +30-821-037202

{ manolis | koutris | rautop | trifon } @intelligence.tuc.gr

Abstract. We study the problem of efficient dissemination of textual
information over wide-area networks. Our dissemination architecture utilises
middle-agents and sophisticated matching algorithms. The data model and
query language is based on the well-known Boolean model from Information
Retrieval. The main focus of this paper is the problem of matching incoming
documents with submitted user profiles. We present four efficient main memory
algorithms for this problem and compare them experimentally.

1 Introduction

The selective dissemination of information (SDI) to interested users is a problem
arising frequently in today's information society. This problem has recently received
the attention of various research communities including researchers from databases
[17, 19, 1, 5], agent systems [4], digital libraries [6], distributed computing [3] and
others. In an SDI scenario, information producers publish information to an SDI
system. This information is forwarded to information consumers that have already
subscribed to it with a matching profile. Agent implementations of SDI systems can
rely on middle agents to match documents with profiles while different kinds of end
agents (producer agents and consumer agents) are doing the publishing and
subscribing [4]. Similar implementation techniques are used in SDI systems
implemented using other technologies [17, 19, 1, 5, 3].

Information in an SDI system is usually structured according to an information
model, and profiles are expressed in an appropriate profile language. In SIFT [18, 19]
and COINS [11], published information is in the form of free text interpreted under
the Boolean or vector space model [2], and the profile language is based on keywords
combined using Boolean operators. In the middle agent of project SHADE published
information is expressed in the logic-based language KIF or the object-based language
MAX, and profiles are queries in these languages [11]. In XFilter information is in the
form of XML documents and the profile language is a version of XPath [1]. In event

dissemination systems Le Subscribe [5] and SIENA [3] published information is in the
form of events (expressed in an appropriate event data model) and profiles are
formulated as queries in this data model. Finally, in the middle agents of the multi-
agent system RETSINA, the published information and posted profiles are service
specifications expressed in the service description language LARKS [15].

In this paper we adopt the information model of SIFT [18] and COINS [11]. We
assume that published information is in the form of free text interpreted under the
Boolean model, and that profiles are expressed by conjunctions of keywords (as, for
example, in modern search engines). Then we concentrate on the matching problem:
Given a database of profiles and an incoming document d, how do we find efficiently,
which profiles match d?

We formalize this problem in an appropriate mathematical framework and study
efficient and scalable algorithms for its solution. For the matching problem, the main
contributions of this paper can be seen as a continuation of the research carried out in
SIFT by Yan and Garcia-Molina [18]1. [18] have proposed four algorithms for the
matching problem (see Section 2) and have carried out a mathematical evaluation of
these algorithms under the assumption that profiles are stored on disk and the cost
parameters of interest are storage space (in disk blocks), number of I/Os (block
reads) and CPU time (measured in accesses of the associated main memory data
structures). In this work we present main memory implementations of these algorithms
and evaluate them experimentally.

The rest of the paper is organised as follows. Section 2 defines the matching
problem formally and introduces the four algorithms developed in SIFT. Section 2
introduces the statistical models for documents and profiles that we will use in our
experiments. Section 3 gives the results and conclusions of our experiments. Finally,
Section 4 summarises the paper and discusses future work.

2 Algorithms for Matching

In this section we first define the matching problem formally. Then we go on to
desribe algorithms for tackling this problem.

We assume the existence of a finite alphabet Σ. A word is a finite non-empty
sequence of letters from Σ. We also assume the existence of two sets of words: the
document vocabulary (denoted by Vd) and the profile vocabulary (denoted by Vp). It is
assumed that Vp ⊆ Vd. In the rest of the paper, the cardinality of any set S will be
denoted by |S|.
Definition 1. A document d is a bag of words from the vocabulary Vd. A profile p is a
conjunction of words from the vocabulary Vp. A document d matches a profile p if
every word of p is included in d.
Example 1. The following is an example of a document:

{ During, a, recent, holiday, in, Milos, I, stayed, in, a, wonderful, hotel }
The following are two examples of profiles:

1 The literature on the other closely related system COINS does not report any algorithms for

the aforementioned problem [11].

holiday AND Milos, holiday AND Crete
The first profile matches the above document while the second one does not.

Let us now turn to algorithms for solving the matching problem. The algorithms
and associated data structures are exactly the ones described in [18], but in our case
all information is assumed to be in main memory.

We do not discuss the agent architecture that we use in our implementation, since it
is not important for the purposes of this paper. Any agent architecture, e.g. RETSINA
[4], could be used for implementing our SDI system. The only thing that has to change
is the content language in order to correspond to the document and profile definitions,
which are given above.

2.1 The Brute Force Algorithm

The brute force algorithm (BF) is a very simple one and is implemented only for
comparison purposes. BF represents every document by its occurrence table. An
occurrence table is a hash table that stores all the words appearing in a document (the
keys are the words themselves). Profiles are stored sequentially in a linked list by BF.
For each profile, BF stores a record that contains the profile identifier and a linked
list with all the words in the profile.2

BF works by scanning the profile list sequentially. For each profile, it probes
the document’s occurrence table for all the words contained in the profile, failing as
soon as a word does not exist in the document. If all the words of a profile are
contained in the document, the profile identifier (and any other useful information) is
added to a success list. When the algorithm terminates, the success list can be used for
forwarding the document to appropriate subscribers.

If information about the occurrence frequency of words appearing in documents is
available, then BF can exploit this information to improve its performance [18]. This
can be done by adopting a ‘‘fail-first’’ strategy and probing the occurrence table first
with the least frequent world, then with the next most frequent and so on. We have not
evaluated a version of BF that takes into account frequency information.

2.2 The Count Algorithm

The Count algorithm creates an index over the database of profiles, and uses it for
discovering quickly which profiles match an incoming document. The index is a hash
table called the profile directory. For each word in the profile vocabulary, Count
creates an entry in the profile directory, where it stores the identifiers of all the
profiles that contain the specific word. For example, a profile that contains five
different words can be found in five different hash table entries. Readers familiar with
Information Retrieval techniques will notice that this is actually an inverted index over
a database of profiles (not over a database of documents as it is used traditionally [2]).

Two arrays named TOTAL and FOUND with size equal to the number of profiles
are also used by Count. For each profile pi, the i-th element of array TOTAL is initially

2 In a real system one has to store lots of other information related to a profile identifier

(subscriber etc.). We will not consider the related issues in any detail in this paper.

set to the number of words in the i-th profile and never changes again. All elements of
array FOUND are initially set to 0. As Count executes, elements of array FOUND are
updated to keep track of how many times a profile identifier was found while probing
the profile directory.

For the representation of an input document, Count uses a linked list, called the
distinct word list. Each element of the list is a distinct word of the document. The
number of elements in the distinct word list is usually smaller that the size of the
document, since we will typically have multiple occurrences of the same word.

The matching procedure for Count is as follows. For each word in the distinct word
list, we use the profile directory to find all the profiles that contain this word. Then we
increment by one every element of array FOUND corresponding to these profiles.
When this procedure is finished, we compare the entries of TOTAL and FOUND
arrays for each profile. If the entry of array FOUND equals the corresponding entry of
array TOTAL for some profile, then this profile matches the document and is added to
the success list.

Variations of Count seem to be examined as candidate algorithms in many
publish/subscribe systems today (see for example [12]).

2.3 The Key Algorithm

Like Count, Key utilises a profile directory as an index over the database of profiles.
The difference is that instead of indexing the profiles according to all the words in
them, Key uses a randomly chosen word as a key, and stores the rest of the words of
the profile as a linked list in the hash table entry along with the profile identifier. For
example, a profile with five words will be hashed in the directory according to one of
these words. Consequently, its corresponding hash table entry will contain the profile
identifier and the remaining four words. For the representation of an input document,
Key uses both data structures used by BF and Count: the occurrence table and the
distinct word list.

The matching algorithm, used by Key is as follows: for each word in the distinct
word list, Key finds all the profiles that are hashed under this word. Then, for the
remaining words of these profiles, it probes the occurrence table to see if each word
appears in the document. As soon as a non-matching word is found, Key stops
querying for this profile and examines the next one. If all the words of the profile are
contained in the document, then the profile identifier is added in the success list.

The performance of Key can be improved if information about occurrence
frequency of words is available [13]. We can index each profile according to its least
frequent word, and store its remaining words in increasing order of frequency. In this
way we make sure that each profile fails as soon as possible.

2.4 The Tree Algorithm

The main idea behind Tree is to store profiles in such a way so that similarities
between them can be exploited during matching. This is achieved by introducing a
trie-like data structure for profile storage [18]. This data structure assumes that

profiles are sorted sequences of words according to some order (e.g., lexicographic).
The following definition is from [18].
Definition 2. Let p be a profile (w1, w2,…, wk) of k words, and 0 ≤ i ≤ k. Then (w1,
w2,…, wi) is called a prefix of p with (wi+1 ,…, wk) its corresponding postfix. A prefix
(w1, w2,…, wi) identifies p if i = k or if there is no other profile, except those identical
to p, that have (w1, w2,…, wi) as a prefix. The shortest prefix that identifies a profile is
called the identifying prefix of that profile (note that a prefix is the identifying prefix
of two profiles if and only if they are identical).

As profiles arrive from subscribing users, Tree organises their identifying prefixes
into a profile tree. The root of the profile tree (level 0) corresponds to the empty
prefix. A node n at level i corresponds to a prefix σ = (w1, w2,…, wi) of some
identifying prefixes. All prefixes identical to σ, are represented by this node n. Its
children are nodes corresponding to prefixes (w1,…, wi, u) of some identifying
prefixes (where u is a word). A node n as above is implemented as a record with the
following fields:
•= Children list: a linked list of pairs (u, x) were u is a word such that (w1,…, wi, u) is

the prefix corresponding to a child of n, and x is a pointer to that child.
•= Profiles list: a linked list of profile identifiers of which σ is the identifying prefix.
•= Postfix list: a linked list of words that form the postfix of the identified profile(s).

To speed up searching, a hash table is used to index the children of the root of the
prefix tree (as in the profile directory of Count and Key).

Figure 1 presents an
example of a database of
profiles and the
corresponding profile tree
as defined above. If we
want to compare this tree
with the profile directory
used by Key and Count, we
can say that the root
corresponds to the
directory and each sub-tree
forms a tree-structured
inverted index.

When an input
document comes along, the
profile tree is searched in a
breadth-first fashion to
discover all matching profiles. The details of this are as follows. At first, for each
distinct word in the document, the child of the root of the profile tree corresponding to
this word is inserted in a queue (the hash table is used here). While the queue is not
empty, we examine the first node in the queue. If there are elements (u, x) of the
children list of this node such that word u is in the document, these children are
inserted in the queue. Then the postfix list of this node is checked against the
occurrence table. If all words in the postfix list are in the document or the postfix is

empty, then all profiles in the profile list of the current node, match the document and
are inserted in the success list.

The performance of Tree can be improved if information about frequency of
occurrences of words is available [18]. Then profiles can be sorted in ascending order
of occurrence frequency thus ending up with more profiles stored in sub-trees
corresponding to low-frequency words. It is very likely then that these sub-trees will
be visited less often.

3 Document and Profile Models

The previous section presented four algorithms for the matching problem originally
proposed in [18]. There are two ways for carrying out an experimental evaluation of
these algorithms. The first choice is to base the evaluation on real databases of profiles
and documents that have been collected from various applications over a period of
time. The second choice is to synthesize documents and queries that follow certain
realistic application scenarios. In this paper we follow the second approach partly
because it is more suited to experimenting with a various possibilities. Additionally,
we are not aware of any existing databases of profiles and documents that are
characteristic of an information dissemination application (and thus could have been
used in our study).

Let us now present the statistical models we used to create the documents and
profiles used in the evaluation of the algorithms. The parameters of our models are
summarised for ease of reference in Table 1.

Table 1. The parameters used for the experiments
Parameter Base Value Description

|Vd| 900,000 Document vocabulary size
Sd 12,000 Document size (in words)

|Vp| 9,000 Profile vocabulary size
Sp 5 Profile size (in words)
Ν 500,000 Number of profiles
l 3 < l < 10 Letters in word
θ 0.9 Skewness factor for the Zipf distribution
q 0 Similarity degree

3.1 The Document Model

We first describe the way input documents are generated in our experiments. We
follow the same methodology as [16] and [18]. Words in the document vocabulary Vd
are identified by a number in the range 1 to |Vd|. This number is called the rank of the
word. Each word in the vocabulary has an occurrence frequency associated with it.
We assume that words in each input document follow Zipf’s law, which states that the
frequency of each word is inversely proportional to its rank [20]. We use the general

form of Zipf’s law given in [7] (page 290) according to which the probability that a
word w appears in a document is given by the following probability distribution:

In other words, the distribution is such that words are ranked in non-increasing order
of occurrence frequency (i.e., word 1 occurs most frequently, followed by word 2,
etc.). The skewness parameter θ in the above distribution is the parameter controlling
its form. As θ increases from slightly above 0 to slightly below 1, the distribution
varies from uniform to Zipfian.

A document consists of Sd words from the document vocabulary Vd (where |Vd| >
Sd). The words of each document are generated by Sd independent and identically
distributed trials. In our implementation a document is generated as follows. We use
the generator introduced in [8] to produce Sd integers ranging from 1 to |Vd| such that
the probability that a produced integer is w is given by the above distribution. Each
actual word then is a string formed by concatenating the integer w produced and a
fixed 2-character string. This has the effect that the length of the word varies from
three to ten letters and it is only used so that word comparison operations become
realistic.

3.2 The Profile Model

The profile model used in our simulations is a modification of the one described in
[18]. The words in the profiles are selected from a subset of the document vocabulary
called the profile vocabulary, by N·Sp independent and identically distributed trials.
An important question that arises immediately is which words from the document
vocabulary to include in the profile vocabulary and what distribution these words
should follow. The profile model of [18] is based on the query model of [16] where
the problem of querying a distributed database of texts is studied. This model has been
developed after experimenting with a database of legal documents to determine
sensible values of various parameters. [16] proposes to form the profile vocabulary
with words 1 up to |Vp| of the document vocabulary where |Vp| = 0.01·|Vd|. This allows
one to discard the very infrequent words at the tail of the Zipf distribution because
these words can be either misspellings or words that are used infrequently and will
probably never appear in a user profile. The very frequent words from the beginning
of the Zipf distribution are included in the profile vocabulary since it is possible to
have profiles involving such words (e.g., rock fans might include the word WHO
while computer technology experts might include the words IT or NEXT). Finally, if
one considers the cumulative word occurrences in the database of [16], the above
value for Vp allows to cover slightly more than 96% of all these occurrences. Inspired
by [16], Yan and Garcia-Molina have used the same ratio of |Vp|/|Vd| in the profile
model of [18]. Since we are not aware of any other study that offers good estimates of
this parameter, we have decided to use the same ratio for our generation of user

profiles. Thus our profile vocabulary is formed from the first (i.e., more frequent)
9,000 words of the document vocabulary.

Assuming the above ratio |Vp|/|Vd|, the question that naturally arises is the following.
Given a database of profiles db and an incoming document d, what is the percentage
of profiles in db that match d? [18] presents its experiments without any reference to
this question. But using the analytical model and the base values for all the
parameters given in [18] we can calculate that the probability that a profile matches an
incoming document is 0.01%. For our base values (see Table 1) this number is 0.15%.
The exact calculations are not given here due to the limited space available.

Of course, the above numbers are arbitrary and whether they are realistic or not
depends on the application at hand. We can easily imagine applications with lower
matching percentage or higher matching percentage. Imagine for example a news alert
service such as the one available at www.cnn.com/EMAIL/ at times of an important
international event (war, terrorist act, etc.). Then most published news articles will
refer to this important event and thus match a great percentage of profiles also created
in response to this event. In the experiments of Section 4, we study the performance of
the four algorithms by varying the matching percentage while the ratio |Vp|/|Vd| is kept
equal to 0.01.

Let us also point out that the lower the ratio |Vp|/|Vd| is, the higher the matching
percentage achieved, as the use of more frequent words in the profiles increases the
probability that these profiles match. To study this in detail, we calculated the
probability Pm that a profile matches an incoming document, using our probability
distribution shown in Formula 1 of Section 3.1. Working as above we have the
following:

In Figure 2 we graph this probability for various values of the parameter |Vp| while
all other values (Sd, Sp, θ) are as in Table 1. In Figure 2 this curve is the one labeled
“curve calculated analytically”. For various values of the parameter |Vp|, we also
generated randomly 500,000 profiles and a single document and counted how many
matching profiles we have. The results are the points plotted in Figure 2 and can easily
be seen to validate our analytical model.

Figure 2. Matching percentage vs. |Vp|

0,0001

0,01

1

100

10 100 1000 10000 100000
|Vp| (log)

m
at

ch
in

g
pe

rc
en

ta
ge

(lo

g)

experimental values curve calculated analytically

Let us close this section by describing the details of how profiles are generated in
our implementation. We generate randomly an integer in the range of 1 to |Vp|
following the uniform distribution. Then we concatenate this integer with a fixed 2-
character string to form a word between three and ten letters (this is as in the
document generation). In this way we can produce Sp words for each of the N profiles
in an experiment.

In order to produce a profile set with controlled matching percentage we produce
two kinds of profiles: profiles that are formed by randomly chosen words from the
input document (matching profiles), and profiles that are formed from randomly
chosen words not contained in the document (non-matching profiles). Thus, if we wish
to set the matching percentage of a profile to k, then each profile is chosen with
probability k, to be a matching one. Moreover, since non-matching profiles are created
only from words not contained in the document, it follows that they fail at their first
word as it follows from the description of the four algorithms given earlier.

4 Results

In this section we evaluate the performance of the four algorithms experimentally,
assuming that both documents and profiles are stored in main memory. These are the
first two crucial differences with the evaluation of these algorithms done in [18],
where profiles are assumed to be stored in secondary storage, and the evaluation is
most of the times analytical.

4.1 Experiments

For our experiments, the algorithms of Section 2 were implemented in C and were run
on a PC with a Pentium III 800MHz processor and 768 MB RAM, running Linux. No
other processes were run on the PC and the time shown in the graphs is elapsed time
in milliseconds (ms). Documents and profiles were generated randomly according to
the statistical models given above.

Each one of our experiments proceeds as follows. At first, we generate the input
document and the database of profiles according to the above document and profile
models. Then we populate the data structures needed for each algorithm. Finally, we
run each algorithm and measure the time needed to match the incoming document
against the database of profiles.

4.2 Varying the Number of Profiles

The first parameter that we vary is the number of profiles N. The values used for the
other parameters are the base values shown in Table 1, while the matching percentage
is set to 20%.

In Figure 3 we show the time taken by the four different matching algorithms as the
number of profiles increases from 500,000 to 2,500,000. BF and Count are in this case
the most sensitive ones to the increase of N. Moreover, Count appears to perform
almost like BF when the number of profiles is about 500,000.

This happens because the performance of Count is heavily dependent on the size of
the distinct word list of the document, and because the comparison of the two main-
memory arrays TOTAL and FOUND adds significant overhead to the algorithm. On
the other hand, Key and Tree are shown to be less sensitive to the increase in the
number of profiles in this case. These two algorithms perform much better than BF
and Count since they need about 50% less time to match the profiles against the
documents (about 3 seconds to match a document against 2,500,000 profiles). This
happens due to the more sophisticated indexing techniques they use.

4.3 Varying the Matching Percentage

Let us now study the performance of the four algorithms when the number of profiles
matching an incoming document varies while all other parameters are set to their base
values given in Table 1. The results are shown in Figure 4.

0

500

1000

1500

2000

2500

3000

0% 20% 40% 60% 80% 100%
percentage of matching

tim
e

(m
s)

BF Count Key Tree

Figure 4. Time vs. percentage of matching for 500,000 profiles

As we can observe all algorithms are affected by an increase in the number of
profiles matching an input document, though some of them show greater sensitivity

Figure 3. Time vs. number of profiles for 20% matching

0
1000
2000

3000
4000
5000
6000

0 500000 1000000 1500000 2000000 2500000
number of profiles

tim
e

(m
s)

BF Count Key Tree

than others. BF examines all the profiles sequentially. This means that the greater the
number of profiles matching an input document, the greater the number of lookups BF
has to do in the document’s occurrence table. Count is also greatly affected from
increasing the matching percentage. As the matching percentage rises, so does the
number of words in the distinct word list that are expected to be in the profiles. This
results in more probes in the profile directory thus more processing time for Count. As
the matching percentage increases, Key also has similar difficulties: in fact, for large
number of matching profiles it performs similarly to BF. The increase in the matching
time of this algorithm should also be expected, since the number of probes in the
occurrence table increases as the matching percentage increases. Nevertheless, Key
appears to be the best choice when the matching percentage is low (below 40%) since
it needs around 66% of the time needed by the best of the other algorithms.

An interesting point in this graph is the behaviour of the Tree algorithm. As we can
observe in Figure 4, Tree is a winner if the matching percentage is below 15%, and
becomes worse than all the other algorithms when the matching percentage rises
above 50%. This behaviour is heavily related to the formation of the tree that indexes
the profiles. From this experiment we can derive that Tree is a good choice when the
matching percentage of the profile set is relatively small. Finally, the similarity in the
behaviour of Key and Tree below 20% matching can be explained as follows. As the
matching percentage is relatively low, the work that has to be done by the two
algorithms is quite similar: a single directory (hash table) lookup for most of the
words in the distinct word list.

5 Conclusions

In this paper we studied the problem of matching incoming documents to submitted
user profiles in an information dissemination system based on the Boolean model. We
studied experimentally the tradeoffs involved in tackling this problem using four
algorithms proposed by Yan and Garcia-Molina [18].

A lot of interesting work remains to be done in this area. Here we briefly mention
some questions we are addressing in our current work:
1. Our current analysis needs to be extended to consider the effect of other

parameters like similarity of profiles etc.
2. It would be nice to have real collections of profiles (presumably coming from

various applications) where these algorithms could be tested. To the best of our
knowledge, such profile collections currently do not exist although experiments
with document collections are now standard practice in Information Retrieval (see
TREC at http://trec.nist.gov).

3. How can we deal with more sophisticated languages for user profiles e.g., with
negation and disjunction? Negation can be easily incorporated into our algorithms
([18] have already discussed this) but incorporating disjunction as well while
remaining very efficient can be trickier. It would also be interesting to consider
more sophisticated document models, query languages and their corresponding
matching algorithms (e.g., we could allow structured documents as in [10] or [1]
or interpret documents and profiles under the vector space model [2]).

6 Acknowledgments

This work was supported in part by project DIET (IST-1999-10088) funded by the
IST Programme of the European Commission, under the FET Proactive Initiative on
“Universal Information Ecosystems”. We would like to aknowledge the contributions
of all partners of DIET to this work. Special thanks go to Franscisco Valverde-
Albacete for enlightening discussions concerning the statistical models and
experiments reported in this paper.

References

1. Altinel M. and Franklin M.J. Efficient Filtering of XML Documents for Selective
Dissemination of Information. Proceedings on the 26th VLDB Conference, pp. 89-98,
2000.

2. Baeza-Yates R. and Ribeiro-Neto B. Modern Information Retrieval. Addison-Wesley,
New York, 1999.

3. Carzaniga A., Rosenblum D. and Wolf A.L. Interfaces and Algorithms for a Wide-Area
Event Notification Service. Proc. of the 19th ACM PODC, 2000.

4. Decker K., Sycara K. and Williamson M. Middle-Agents for the Internet. Proceedings of
IJCAI-97, 1997.

5. Fabret F., Jacobsen H.A., Llirbat F., Pereira J., Ross K.A. and Shasha D. Filtering
algorithms and implementation for very fast publish/subscribe systems. Proceedings of
ACM SIGMOD, 2001.

6. Faensen D., Faulstich L., Schweppe H., Hinze A. and Steindinger A. A Notification
Service for Digital Libraries. Proceedings of the Joint ACM/IEEE Conference on Digital
Libraries (JCDL ’01), 2001.

7. Gonnet G.H. and Baeza-Yates R. Handbook of Algorithms and Data Structures (2nd

edition), Addison-Wesley, New York, 1991.
8. Gray J., Sundaresan P., Englert S., Baclawski K. and Weinberger P.J. Quickly generating

billion-record synthetic databases. Proc. Of ACM SIGMOD, 1994.
9. Kernigham B.W. and Ritchie D.M. The C Programming Language (2nd edition), Prentice

Hall, 1988.
10. Koubarakis M. Boolean Queries with Proximity Operators for Information Dissemination.

Proceedings of the Workshop on Foundations of Models and Languages for Information
Integration (FMII-01), Viterbo, Italy, September 16-18, 2001. In LNCS (forthcoming).

11. Kuokka D. and Harada L. Matchmaking for Information Agents. Proceedings of IJCAI
'95, pp. 672-678, Montreal, Canada, 1995.

12. Marrow P. et. al. Agents in Decentralised Information Ecosystems: The DIET Approach.
Symposium on Information Agents for E-Commerce, AISB'01 Convention, University of
York, United Kingdom, March 21- 24, 2001.

13. Pereira J., Fabret F., Llibrat F. and Shasha D. Efficient matching for web-based
publish/subscribe systems. In Proc. of the Int Conf. On Cooperative Information Systems
(CooPIS), 2000.

14. Schwartz E.S. A Dictionary of Minimum Redundancy Encoding. Journal of the ACM,
10(4), October 1963.

15. Sycara K., Klusch M., Widoff S. and Lu J. Dynamic service matchmaking among agents
in open information environments. SIGMOD Record, 28(1): 47-53, 1999.

16. Tomasic A. and Garcia-Molina H. Performance of inverted indices in distributed text
document retrieval systems. Proceedings of the 2nd International Conference on Parallel

and Distributed Systems, December 8-17, 1993. Full version appears as Stanford Tech.
Report No 8090.

17. Yan T.W. and Garcia-Molina H. Distributed Selective Dissemination of Information.
Proceedings of 3rd International Conference on Parallel and Distributed Information
Systems (PDIS), pp. 89-98, Austin, Texas, September 1994.

18. Yan T.W. and Garcia-Molina H. Index Structures for Selective Dissemination of
Information Under the Boolean Model. ACM TODS, 19(2):332-364, 1994.

19. Yan T.W. and Garcia-Molina H. The SIFT Information Dissemination System. ACM
TODS, 24(4): 529-565,1999.

20. Zipf G.K. Human Behaviour sand Principle of Least Effort, Addison-Wesley, Cambridge,
Massachusetts, 1949.

